Room-Temperature Observation of Local and Nonlocal Electronic Quantum States on the Surface of Silicon

Abstract

Coherent and incoherent stable electronic quantum objects are observed at room temperature due to the formation of regions with the forcefully changed similar charge states on silicon surfaces by atomic force microscopy. Using the theory of entangled states, the interaction conditions for such objects are established and the quantum screening and quantum interference effects between them are explained.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    D. Gross, S. N. Flammia, and J. M. Eisert, Phys. Rev. Lett. 102, 190501 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    C. H. Bennett, G. Brassard, C. Cre[acute]peau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    S. I. Doronin, Kvant. Magiya 1, 1123 (2004).

    Google Scholar 

  4. 4

    S. I. Doronin, E. B. Fel’dman, I. Ya. Guinzbourg, and I. I. Maximov, Chem. Phys. Lett. 341, 144 (2001).

    ADS  Article  Google Scholar 

  5. 5

    S. I. Doronin, E. B. Fel’dman, and I. I. Maximov, J. Magn. Reson. 171, 37 (2004).

    ADS  Article  Google Scholar 

  6. 6

    G. Stics, Sci. Am. 4, 69 (2005).

    Google Scholar 

  7. 7

    T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, Nature (London, U.K.) 555, 633 (2018).

    ADS  Article  Google Scholar 

  8. 8

    N. Torkhov, in Proceedings of the 29th International Crimean Conference on Microwave and Telecommunication Technology CriMiCo’2019, Sevastopol, Crimea, Russia, Sept. 8–14, 2019, ITM Web of Conf. 30, 08014 (2019). https://doi.org/10.1051/itmconf/20193008014

  9. 9

    N. A. Torkhov, in Proceedings of the 10th International Conference on Physics and Technology of Nanoheterostructural Microwave Electronics, Mokerov’s Readings, Moscow, May 15–16, 2019 (NIYaU MIFI, Mosow, 2019), p. 14.

  10. 10

    W. J. Kaiser and L. D. Bell, Phys. Rev. Lett. 60, 1406 (1988).

    ADS  Article  Google Scholar 

  11. 11

    H. Palm, M. Arbes, and M. Schulz, Appl. Phys. A 56, 1 (1993).

    ADS  Article  Google Scholar 

  12. 12

    C. Detavernier, R. L. van Meirhaeghe, R. Donaton, K. Maex, and F. Cardon, J. Appl. Phys. 84, 3226 (1998).

    ADS  Article  Google Scholar 

  13. 13

    V. L. Mironov, Principles of Scanning Probe Microscopy (Inst. Fiz. Mikrostrukt. RAN, Nizh. Novgorod, 2004) [in Russian].

    Google Scholar 

  14. 14

    V. Heine, Phys. Rev. A 138, 1689 (1965).

    ADS  Article  Google Scholar 

  15. 15

    V. G. Bozhkov, N. A. Torkhov, and A. V. Shmargunov, J. Appl. Phys. 109, 073714 (2011).

    ADS  Article  Google Scholar 

  16. 16

    N. A. Torkhov, Semiconductors 52, 1269 (2018).

    ADS  Article  Google Scholar 

  17. 17

    N. A. Torkhov and V. A. Novikov, in Proceedings of the 28th International Conference on Microwave and Telecommunication Technology CriMiCo 2018, Sevastopol, Russia, Sept. 9–15, 2018, p. 869.

  18. 18

    I. S. Burmistrov, Doctoral Dissertation (Landau Inst. Theor. Phys. RAS, Chernogolovka, 2012).

Download references

Funding

This study was supported by Sevastopol State University, project identifier 42-01-09/90/2020-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Torkhov.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torkhov, N.A. Room-Temperature Observation of Local and Nonlocal Electronic Quantum States on the Surface of Silicon. Semiconductors 55, 14–20 (2021). https://doi.org/10.1134/S1063782621010176

Download citation

Keywords:

  • silicon
  • surface
  • coherent quantum states
  • quantum screening
  • quantum interference
  • entangled states