GaAs Semiconductor Passivated by (NH4)2Sx: Analysis of Different Passivation Methods Using Electrical Characteristics and XPS Measurements


Some of the IIIV semiconductor used in various devices suffer from the surface high density of states limiting their application. This study compares and evaluates five different ammonium sulfide passivation methods on GaAs surface with the aim to enhance the electrical characteristics of Au|n-GaAs Schottky junction. Wet chemical passivation of the n-GaAs surface was carried out by dipping the samples in saturated ammonium sulfide solutions at various temperatures and for various times. We also used acidic cleaning to improve the device performance. Our investigation shows a noticeable improvement in the electrical characteristics of the device reported here using acidic cleaning and ammonium sulfide passivation methods. A 23% increase in Schottky barrier height is found, which is much higher than that reported in the literature. Further, we measured a reduction of around three orders of magnitudes in saturation current as well as improvement in ideality factor to 1.23 for the best conditions of surface acidic cleaning and passivation. X-ray photoelectron spectroscopy study revealed a suppression of oxide layer by introduction of sulfide species in GaAs surface after the passivation. The lowest concentration of oxygen was found on the surface of the sample passivated under the optimum condition.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    X. Jiang, F. Tang, Q. Xie, P. Calka, S.-H. Jung, and M. E. Givens, ASM IP Holding B. V. Almere, NL, USA (2018).

  2. 2

    C. Al-Amin, M. Karabiyik, P. K. Vabbina, R. Sinha, and N. Pala, Nanomaterials 6 (6), 86 (2016).

    Article  Google Scholar 

  3. 3

    E. V. Lutsenko, M. V. Rzheutski, A. G. Vainilovich, I. E. Svitsiankou, V. A. Shulenkova, E. V. Muravitskaya, A. N. Alexeev, S. I. Petrov, and G. P. Yablonskii, Semiconductors 52, 2107 (2018).

    ADS  Article  Google Scholar 

  4. 4

    V. N. Bessolov, E. V. Konenkova, T. A. Orlova, S. N. Rodin, N. V. Seredova, A. V. Solomnikova, M. P. Shcheglov, D. S. Kibalov, and V. K. Smirnov, Semiconductors 53, 989 (2019).

    ADS  Article  Google Scholar 

  5. 5

    Y. Ke, S. Milano, X. W. Wang, N. Tao, and Y. Darici, Surf. Sci. 415, 29 (1998).

    ADS  Article  Google Scholar 

  6. 6

    W. Wang, G. Lee, M. Huang, R. M. Wallace, and K. Cho, J. Appl. Phys. 107, 103720 (2010).

    ADS  Article  Google Scholar 

  7. 7

    A. Ohtake, G. Shunji, and J. Nakamura, Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  8. 8

    N. X. Xue Chen, Z. Yang, F. Gong, Z. Wei, D. Wang, J. Tang, X. Fang, D. Fang, and L. Liao, Nanotechnology 29, 1 (2018).

    Google Scholar 

  9. 9

    F. Chen, J. L. Tang, G. J. Liu, D. Fang, X. Gao, Z. K. Xu, X. Fang, X. H. Ma, L. Xu, X. H. Wang, and Z. P. Wei, Adv. Mater. Res. 1118, 154 (2015).

    Article  Google Scholar 

  10. 10

    M. V. Lebedev, T. V. Lvova, A. L. Shakhmin, O. V. Rakhimova, P. A. Dementev, and I. V. Sedova, Semiconductors 53, 892 (2019).

    ADS  Article  Google Scholar 

  11. 11

    T. V. Lvova, A. L. Shakhmin, I. V. Sedova, and M. V. Lebedev, Appl. Surf. Sci. 311, 300 (2014).

    ADS  Article  Google Scholar 

  12. 12

    S. L. Heslop, L. Peckler, and A. J. Muscat, J. Vacuum Sci. Technol. A 35, 03E110 (2017).

  13. 13

    S. Jiang, G. He, S. Liang, L. Zhu, W. Li, C. Zheng, J. Lv, and M. Liu, J. Alloys Compd. 704, 322 (2017).

    Article  Google Scholar 

  14. 14

    S. Subramanian, E. Y.-J. Kong, D. Li, S. Wicaksono, S. F. Yoon, and Y. C. Yeo, IEEE Trans. Electron Dev. 61, 2767 (2014).

    ADS  Article  Google Scholar 

  15. 15

    S. Kumar, S. Kumari, S. K. Jangir, R. K. Pandey, A. Goyal, G. Upadhyay, P. Mishra, T. Srinivasan, and A. K. Mahapatro, Integr. Ferroelectr. 186, 77 (2018).

    Article  Google Scholar 

  16. 16

    H. Zhang, J. Yang, J.-R. Chen, J. R. Engstrom, T. Hanrath, and F. W. Wise, J. Phys. Chem. Lett. 7, 642 (2016).

    Article  Google Scholar 

  17. 17

    R. Ghita, C. Negrila, C. Cotirlan, and C. Logofatu, Digest J. Nanomater. Biostruct. 8, 1335 (2013).

    Google Scholar 

  18. 18

    K. Sato, M. Sakata, and H. Ikoma, Jpn. J. Appl. Phys. 32, 3354 (1993).

    ADS  Article  Google Scholar 

  19. 19

    L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, Crystals 8, 226 (2018).

    Article  Google Scholar 

  20. 20

    K. Hwang and S. S. Li, J. Appl. Phys. 67, 2162 (1990).

    ADS  Article  Google Scholar 

  21. 21

    A. Salehi and A. Nikfarjam, Sens. Actuators, B 101, 394 (2004).

    Article  Google Scholar 

  22. 22

    A. Salehi, A. Nikfarjam, and D. J. Kalantari, IEEE Sens. J. 6, 1415 (2006).

    ADS  Article  Google Scholar 

  23. 23

    T. Kuan, P. Batson, T. Jackson, H. Rupprecht, and E. Wilkie, J. Appl. Phys. 54, 6952 (1983).

    ADS  Article  Google Scholar 

  24. 24

    D. H. van Dorp, S. Arnauts, M. Laitinen, T. Sajavaara, J. Meersschaut, T. Conard, F. Holsteyns, and J. Kelly, Solid State Phenom. 282, 48 (2018).

    Article  Google Scholar 

  25. 25

    S. Aithal and J. J. Dubowski, Appl. Phys. Lett. 112, 153102 (2018).

    ADS  Article  Google Scholar 

  26. 26

    P. S. Das and A. Biswas, Appl. Phys. A 118, 967 (2015).

    ADS  Article  Google Scholar 

  27. 27

    L. Chen, Z. Yu-Ming, Z. Yi-Men, and L. Hong-Liang, Chin. Phys. B 22, 076701 (2013).

    ADS  Article  Google Scholar 

  28. 28

    S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006).

    Google Scholar 

  29. 29

    D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 2006).

    Google Scholar 

  30. 30

    J. Behnejad, A. Salehi, and H. Mahmoodnia, in Iranian IEEE Conference on Electrical Engineering ICEE, 2017 (2017), p. 283.

  31. 31

    W. Jin, Y. Liu, K. Yuan, K. Zhang, Y. Ye, W. Wei, and L. Dai, IEEE Electron Dev. Lett. 40, 119 (2019).

    ADS  Article  Google Scholar 

  32. 32

    A. Kırsoy, M. Ahmetoglu, A. Asimov, and B. Kucur, Acta Phys. Polon. A 128, B-170 (2015).

    Article  Google Scholar 

  33. 33

    N. Fairley, Casa Software Ltd., 2005.

  34. 34

    C. Spindt, R. Besser, R. Cao, K. Miyano, C. Helms, and W. Spicer, Appl. Phys. Lett. 54, 1148 (1989).

    ADS  Article  Google Scholar 

  35. 35

    H. A. Budz, M. C. Biesinger, and R. R. LaPierre, J. Vacuum Sci. Technol. B 27, 637 (2009).

    ADS  Article  Google Scholar 

  36. 36

    S. C. Ghosh, M. C. Biesinger, R. R. LaPierre, and P. Kruse, J. Appl. Phys. 101, 114322 (2007).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Salehi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmoodnia, H., Salehi, A. & Mastelaro, V.R. GaAs Semiconductor Passivated by (NH4)2Sx: Analysis of Different Passivation Methods Using Electrical Characteristics and XPS Measurements. Semiconductors 54, 817–826 (2020).

Download citation


  • GaAs surface
  • acidic cleaning
  • (NH4)2Sx passivation
  • electrical characteristics
  • X-ray photoelectron spectroscopy