Investigation of Pd|HfO2|AlGaN|GaN Enhancement-Mode High Electron Mobility Transistor with Sensitization, Activation, and Electroless-Plating Approaches


A new Pd|HfO2|AlGaN|GaN metal-oxide-semiconductor (MOS) enhancement-mode high electron mobility transistor (HEMT) is fabricated with low-temperature sensitization, activation, electroless-plating, and two-step gate-recess approaches. Experimentally, a high positive threshold voltage Vth of 1.96 V, a very low gate leakage IG of 6.3 × 10–8 mA/mm, a high maximum extrinsic transconductance gm, max of 75.3 mS/mm, a high maximum drain saturation current ID, max of 266.9 mA/mm, and a high ON/OFF current ratio of 7.6 × 107 are obtained at 300 K. Moreover, the related temperature-dependent characteristics, over temperature ranges from 300 to 500 K, are comprehensively studied. The very low temperature coefficients on gate current, drain saturation current, transconductance, and threshold voltage confirm the thermal-stable capability of the studied device. Therefore, based on these advantages, the studied Pd|HfO2|AlGaN|GaN MOS structure is suitable for the development of high-performance HEMTs.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.


  1. 1

    T. R. Lenka and A. K. Panda, Semiconductors 45, 650 (2011).

    ADS  Article  Google Scholar 

  2. 2

    L. Y. Su, F. Lee, and J. J. Huang, IEEE Trans. Electron Dev. 61, 460 (2014).

    ADS  Article  Google Scholar 

  3. 3

    M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron Dev. 60, 3053 (2013).

    ADS  Article  Google Scholar 

  4. 4

    Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, IEEE Electron Dev. Lett. 26, 435 (2005).

    ADS  Article  Google Scholar 

  5. 5

    L. Yuan, H. Chen, and K. J. Chen, IEEE Electron Dev. Lett. 32, 303 (2011).

    ADS  Article  Google Scholar 

  6. 6

    T. H. Hung, P. S. Park, S. Krishnamoorthy, D. N. Nath, and S. Rajan, IEEE Electron Dev. Lett. 35, 312 (2014).

    ADS  Article  Google Scholar 

  7. 7

    Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, IEEE Electron Dev. Lett. 34, 1373 (2013).

    ADS  Article  Google Scholar 

  8. 8

    S. Ahn, B. J. Kim, Y. H. Lin, F. Ren, S. J. Pearton, G. Yang, J. Kim, and I. I. Kravchenko, J. Vac. Sci. Technol. B 34, 051202 (2016).

    Article  Google Scholar 

  9. 9

    Q. Zhou, L. Liu, A. Zhang, B. Chen, Y. Jin, Y. Shi, Z. Wang, W. Chen, and B. Zhang, IEEE Electron Dev. Lett. 37, 165 (2016).

    ADS  Article  Google Scholar 

  10. 10

    S. J. Huang, C. W. Chou, Y. K. Su, J. H. Lin, H. C. Yu, D. L. Chen, and J. L. Ruan, Appl. Surf. Sci. 401, 373 (2017).

    ADS  Article  Google Scholar 

  11. 11

    R. Wang, Y. Cai, C. W. Tang, K. M. Lau, and K. J. Chen, IEEE Electron Dev. Lett. 27, 793 (2006).

    ADS  Article  Google Scholar 

  12. 12

    S. Sugiura, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, Phys. Status Solidi C 5, 1923 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Q. Liu and S. Lau, Solid State Electron. 42, 677 (1998).

    ADS  Article  Google Scholar 

  14. 14

    C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, J. Electrochem. Soc. 159, D637 (2012).

    Article  Google Scholar 

  15. 15

    C. C. Chen, H. I. Chen, I. P. Liu, P. C. Chou, J. K. Liou, C. C. Huang, and W. C. Liu, Sens. Actuators, B 212, 127 (2015).

    Article  Google Scholar 

  16. 16

    B. E. Conway, R. E. White, and J. O. M. Bockris, Modern Aspects of Electrochemistry (Kluwer Academic, New York, 2002).

    Google Scholar 

  17. 17

    C. W. Chen, P. H. Lai, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, Semicond. Sci. Technol. 21, 1358 (2006).

    ADS  Article  Google Scholar 

Download references


This work is supported by the Ministry of Science and Technology of the Republic of China under Contract nos. MOST 108-2221-E-017-006 and MOST 108-2221-E-006-045.

Author information



Corresponding author

Correspondence to J.-H. Tsai.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Niu, J., Liu, W. et al. Investigation of Pd|HfO2|AlGaN|GaN Enhancement-Mode High Electron Mobility Transistor with Sensitization, Activation, and Electroless-Plating Approaches. Semiconductors 54, 803–810 (2020).

Download citation


  • HfO2, AlGaN
  • GaN
  • metal-oxide-semiconductor
  • high electron mobility transistor
  • electroless plating
  • gate recess
  • threshold voltage