Skip to main content
Log in

Specific Features of Carrier Transport in n+n0n+ Structures with a GaAs/AlGaAs Heterojunction at Ultrahigh Current Densities

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The current–voltage characteristics of n+-GaAs/n0-GaAs/N0-AlGaAs/N+-AlGaAs/n+-GaAs isotype heterostructures and n+-GaAs/n0-GaAs/n+-GaAs homostructures are studied. It is shown that, for a heterostructure under reverse bias providing the injection of electrons from n0-GaAs into N0-AlGaAs, the maximum operating voltage reaches a value of 48 V at a thickness of the N0-AlGaAs layer of 1.0 μm, and the current–voltage characteristic has no region of negative differential resistance. The operation of a homostructure is accompanied by a transition to the negative-differential-resistance region at a voltage of 10 V. Theoretical analysis in terms of the energy-balance model demonstrated that the reverse-biased isotype heterostructure has no negative-differential-resistance region because, in this case, the field domain does not collapse in contrast to what occurs in homostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Caruso, P. Spirito, and G. Vitale, IEEE Trans. Electron Dev. 21, 578 (1974).

    Article  ADS  Google Scholar 

  2. J. Kostamovaara and S. Vainshtein, Breakdown Phenomena in Semiconductors and Semiconductor Devices (World Scientific, Singapore, 2005), Vol. 36.

    MATH  Google Scholar 

  3. N. I. Podolska and P. B. Rodin, Tech. Phys. 43, 527 (2017).

    Google Scholar 

  4. V. I. Brylevskiy, I. A. Smirnova, N. I. Podolska, Yu. A. Zharova, P. B. Rodin and I. V. Grekhov, Tech. Phys. 44, 160 (2018).

    Google Scholar 

  5. J. B. Gunn, Solid Stte Commun. 1 (4), 88 (1963).

    Article  ADS  Google Scholar 

  6. S. N. Vainshtein, V. S. Yuferev, and J. T. Kostamovaara, J. Appl. Phys. 97, 024502 (2005).

    Article  ADS  Google Scholar 

  7. S. O. Slipchenko, A. A. Podoskin, O. S. Soboleva, N. A. Pikhtin, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, V. A. Simakov, and I. S. Tarasov, J. Appl. Phys. 119, 124513 (2016).

    Article  ADS  Google Scholar 

  8. W. Gao, X. Wang, R. Chen, D. B. Eason, G. Strasser, J. P. Bird, and J. Kono, ACS Photon. 2, 1155 (2015).

  9. R. Chen, W. Gao, X. Wang, G. R. Aizin, J. Mikalopas, T. Arikawa, K. Tanaka, D. B. Eason, G. Strasser, J. Kono, and J. P. Bird, IEEE Trans. Nanotechnol. 14, 524 (2015).

    Article  ADS  Google Scholar 

  10. X. Wang, P. Crump, H. Wenzel, A. Liero, T. Hoffmann, A. Pietrzak, C. M. Schultz, A. Klehr, A. Ginolas, S. Einfeldt, F. Bugge, G. Erbert, and G. Trankle, IEEE J. Quant. Electron. 46, 658 (2010).

    Article  ADS  Google Scholar 

  11. D. A. Veselov, V. A. Kapitonov, N. A. Pikhtin, A. V. Lyutetskiy, D. N. Nikolaev, S. O. Slipchenko, Z. N. Sokolova, V. V. Shamakhov, I. S. Shashkin, and I. S. Tarasov, Quant. Electron. 44, 993 (2014).

    Article  ADS  Google Scholar 

  12. S. O. Slipchenko, A. A. Podoskin, O. S. Soboleva, N. A. Pikhtin, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, V. A. Simakov, and I. S. Tarasov, J. Appl. Phys. 121, 054502 (2017).

    Article  ADS  Google Scholar 

  13. M. Feng, J. Qiu, and N. Holonyak, IEEE J. Quant. Electron. 54 (2), 1 (2018).

    Google Scholar 

  14. B. S. Ryvkin and E. A. Avrutin, J. Appl. Phys. 97, 123103 (2005).

    Article  ADS  Google Scholar 

  15. J. B. Gunn, in Plasma Effects Solids (Academic, New York, 1965), p. 199.

    Google Scholar 

  16. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien, New York, 1984). https://doi.org/10.1007/978-3-7091-8752-4

    Book  Google Scholar 

  17. T. Grasser, T. W. Tang, H. Kosina, and S. Selberherr, Proc. IEEE 91, 251 (2003).

    Article  Google Scholar 

  18. Y. Apanovich, E. Lyumkis, B. Polsky, A. Shur, and P. Blakey, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 13, 702 (1994).

    Article  Google Scholar 

  19. V. Palankovski, S. Vainshtein, V. Yuferev, J. Kostamovaara, and V. Egorkin, Appl. Phys. Lett. 106, 183505 (2015).

    Article  ADS  Google Scholar 

  20. H. Hjelmgren and T. W. Tang, Solid State Electron. 37, 1649 (1994).

    Article  ADS  Google Scholar 

  21. B. Gonzalez, V. Palankovski, H. Kosina, A. Hernandez, and S. Selberherr, Solid State Electron. 43, 1791 (1999).

    Article  ADS  Google Scholar 

Download references

FUNDING

The study was supported by a program of the Russian Foundation for Basic Research, grant no. 18-08-01130 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Slipchenko.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slipchenko, S.O., Podoskin, A.A., Soboleva, O.S. et al. Specific Features of Carrier Transport in n+n0n+ Structures with a GaAs/AlGaAs Heterojunction at Ultrahigh Current Densities. Semiconductors 53, 806–813 (2019). https://doi.org/10.1134/S1063782619060241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619060241

Navigation