Skip to main content
Log in

Terahertz Optoelectronics of Quantum Rings and Nanohelices

  • INFRARED MICROWAVE PHENOMENA IN NANOSTRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We outline a range of proposals on using quantum rings and nanohelices for terahertz device implementations. We show that an Aharonov-Bohm quantum ring system and a double-gated quantum ring system both permit control over the polarization properties of the associated terahertz radiation. In addition, we review the superlattice properties of a mathematically similar system, that of a nanohelix in external electric fields, which reveals negative differential conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. H. Siegel, IEEE Trans. Microwave Theory Technol. 50, 910 (2002).

    Article  ADS  Google Scholar 

  2. B. Ferguson and M. E. Portnoi, Phys. Rev. B 85, 245419 (2012).

    Article  ADS  Google Scholar 

  3. M. Tonouchi, Nat. Photon. 1, 97 (2007).

    Article  ADS  Google Scholar 

  4. A. M. Alexeev and M. E. Portnoi, Phys. Rev. B 85, 245419 (2012).

  5. A. M. Alexeev and M. E. Portnoi, Phys. Status Solidi C 9, 1309 (2012).

    Article  ADS  Google Scholar 

  6. A. M. Alexeev, I. A. Shelykh, and M. E. Portnoi, Phys. Rev. B 88, 085429 (2013).

    Article  ADS  Google Scholar 

  7. T. P. Collier, V. A. Saroka, and M. E. Portnoi, Phys. Rev. B 96, 235430 (2017).

    Article  ADS  Google Scholar 

  8. O. V. Kibis, S. V. Malevannyy, L. Huggett, D. G. W. Parfitt, and M. E. Portnoi, Electromagnetics 25, 425 (2005).

    Article  Google Scholar 

  9. O. V. Kibis, D. G. W. Parfitt, and M. E. Portnoi, Phys. Rev. B 71, 035411 (2005).

    Article  ADS  Google Scholar 

  10. C. A. Downing, M. G. Robinson, and M. E. Portnoi, Phys. Rev. B 94, 155306 (2016).

    Article  ADS  Google Scholar 

  11. Physics of Quantum Rings, Ed. by V. M. Fomin (Springer, Berlin, 2014).

    MATH  Google Scholar 

  12. W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. London, Sect. B 62, 8 (1949).

    Google Scholar 

  13. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, and P. M. Petroff, Phys. Rev. Lett. 84, 2223 (2000).

    Article  ADS  Google Scholar 

  15. E. Ribeiro, A. O. Govorov, W. Carvalho, Jr., and G. Medeiros-Riberio, Phys. Rev. Lett. 92, 126402 (2004).

    Article  ADS  Google Scholar 

  16. Z. Ren and P.-X. Gao, Nanoscale 6, 9366 (2014).

    Article  ADS  Google Scholar 

  17. B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the EU H2020 RISE project CoExAN (TPC and MEP), the EPSRC CDT in Metamaterials XM2 (TPC), the RFBR project 18-29-19007 (OVK), and by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program (MEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Portnoi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collier, T.P., Alexeev, A.M., Downing, C.A. et al. Terahertz Optoelectronics of Quantum Rings and Nanohelices. Semiconductors 52, 1813–1816 (2018). https://doi.org/10.1134/S1063782618140075

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618140075

Navigation