Skip to main content
Log in

Specific Features of the Electrochemical Capacitance–Voltage Profiling of GaAs LED and pHEMT Structures with Quantum-Confined Regions

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

GaAs light-emitting (LED) and HEMT structures with δ-doped regions, InGaAs/GaAs quantum wells, and surface layers of InAs/GaAs quantum dots were studied by means of the electrochemical capacitance- voltage profiling technique. The concentration depth profiles of free charge carriers were obtained. Charges accumulated in quantum wells and quantum dots, as well as the doping levels of the emitter and δ layers were determined. The band structure and free carrier density distribution over the depth of the samples with different quantum well geometry were simulated. The specific features of electrochemical capacitance- voltage profiling in different heterostructure types are analyzed. A method of integration of capacitance- voltage curves at each etching stage was suggested. This method provides the efficient separation of responses from closely located layers, particularly the quantum well and δ layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. A. K. Geim, Science (Washington, DC, U. S.) 324, 1530 (2009).

    Article  ADS  Google Scholar 

  3. V. I. Zubkov, O. V. Kucherova, A. V. Zubkova, J. E. Butler, V. A. Ilyin, A. V. Afanas’ev, S. A. Bogdanov, and A. L. Vikharev, J. Appl. Phys. 118, 145703 (2015).

    Article  ADS  Google Scholar 

  4. G. Cassabois, P. Valvin, and B. Gil, Nat. Photon. 10, 262 (2016).

    Article  ADS  Google Scholar 

  5. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).

    Article  ADS  Google Scholar 

  6. N. V. Kuznetsova, D. V. Nechaev, N. M. Shmidt, S. Yu. Karpov, N. V. Rzheutskii, V. E. Zemlyakov, V. Kh. Kaibyshev, D. Yu. Kazantsev, S. I. Troshkov, V. I. Egorkin, B. Ya. Ber, E. V. Lutsenko, S. V. Ivanov, and V. N. Jmerik, Tech. Phys. Lett. 42, 635 (2016).

    Article  ADS  Google Scholar 

  7. D. S. Frolov and V. I. Zubkov, Semicond. Sci. Technol. 31, 125013 (2016).

    Article  ADS  Google Scholar 

  8. I. A. Karpovich, B. N. Zvonkov, N. V. Baidus, S. V. Tikhov, and D. O. Filatov, Trends in Nanotechnology Research (Nova Science, New York, 2004).

    Google Scholar 

  9. J. L. Primus, K-H. Choi, A. Trampert, A. M. Yakunin, J. Ferre, J. H. Wolter, W. van Roy, and J. de Boeck, J. Cryst. Growth 280, 32 (2005).

    Article  ADS  Google Scholar 

  10. T. Mimura, Jpn. J. Appl. Phys. 44, 8263 (2005).

    Article  ADS  Google Scholar 

  11. M. Golio and J. Golio, RF and Microwave Passive and Active Technologies (CRC, Boca Raton, FL, 2007).

    Book  Google Scholar 

  12. Momcilo M. Pejovic Milic and M. Pejovic, Different Types of Field-Effect Transistors—Theory and Applications (InTech, Rijeka, Croatia, 2017).

    Book  Google Scholar 

  13. T. Ambridge and M. Faktor, J. Appl. Electrochem. 5, 319 (1975).

    Article  Google Scholar 

  14. V. I. Zubkov, Diagnostics of Semiconductor Nanoheterostructures by Admittance Spectroscopy Methods (Elmor, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  15. G. E. Yakovlev, D. S. Frolov, A. V. Zubkova, E. E. Levina, V. I. Zubkov, A. V. Solomonov, O. K. Sterlyadkin, and S. A. Sorokin, Semiconductors 50, 320 (2016).

    Article  ADS  Google Scholar 

  16. V. Zubkov, O. Kucherova, D. Frolov, and A. Zubkova, Phys. Status Solidi C 10, 342 (2013).

    Article  ADS  Google Scholar 

  17. D. S. Frolov, G. E. Yakovlev, V. I. Zubkov, A. L. Dudin, A. V. Solomnikova, and E. S. Kunashik, Izv. SPbGETU LETI 2, 6 (2016).

    Google Scholar 

  18. M. V. Dorokhin, P. B. Demina, N. V. Baidus’, Yu. A. Danilov, B. N. Zvonkov, and M. M. Prokof’eva, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 390 (2010).

    Article  Google Scholar 

  19. M. V. Dorokhin, A. V. Zdoroveishev, E. I. Malysheva, Yu. A. Danilov, B. N. Zvonkov, and A. E. Sholina, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 511 (2012).

    Article  Google Scholar 

  20. M. V. Dorokhin, S. V. Zaitsev, A. V. Rykov, A. V. Zdoroveyshchev, E. I. Malysheva, Yu. A. Danilov, V. I. Zubkov, D. C. Frolov, G. E. Yakovlev, and A. V. Kudrin, Tech. Phys. 62, 1545 (2017).

    Article  Google Scholar 

  21. B. N. Zvonkov, O. V. Vikhrova, Yu. A. Danilov, E. S. Demidov, P. B. Demina, M. V. Dorokhin, Yu. N. Drozdov, V. V. Podol’skii, and M. V. Sapozhnikov, J. Opt. Technol. 75, 389 (2008).

    Article  Google Scholar 

  22. I. A. Karpovich, N. V. Baidus’, B. N. Zvonkov, S. V. Morozov, D. O. Filatov, and A. V. Zdoroveishev, Nanotechnology 12, 425 (2001).

    Article  ADS  Google Scholar 

  23. V. I. Zubkov, M. A. Melnik, A. V. Solomonov, E. O. Tsvelev, F. Bugge, M. Weyers, and G. Tränkle, Phys. Rev. B 70, 075312 (2004).

    Article  ADS  Google Scholar 

  24. G. Yakovlev, D. Frolov, and V. Zubkov, J. Phys.: Conf. Ser. 690, 012015 (2016).

    Google Scholar 

  25. V. I. Zubkov, Semiconductors 41, 320 (2007).

    Article  ADS  Google Scholar 

  26. V. I. Zubkov, I. N. Yakovlev, V. G. Litvinov, A. V. Ermachikhin, O. V. Kucherova, and V. N. Cherkasova, Semiconductors 48, 917 (2014).

    Article  ADS  Google Scholar 

  27. A. N. Petrovskaya and V. I. Zubkov, Semiconductors 43, 1328 (2009).

    Article  ADS  Google Scholar 

  28. E. Yu. Kozlovskii, Extended Abstract of Cand. Sci. Dissertation (Novgor. State Univ., Velik. Novgorod, 2013).

    Google Scholar 

  29. E. A. Tarasova, E. S. Obolenskaya, A. V. Hananova, S.V. Obolensky, V. E. Zemliakov, V. I. Egorkin, A. V. Nezhenzev, A. V. Saharov, A. F. Zazul’nikov, V. V. Lundin, E. E. Zavarin, and G. V. Medvedev, Semiconductors 50, 1574 (2016).

    Article  ADS  Google Scholar 

  30. A. L. Dudin, M. S. Mironova, G. E. Yakovlev, D. S. Frolov, I. V. Kogan, I. V. Shukov, V. I. Zubkov, and G. F. Glinskii, Prikl. Fiz., No. 3, 78 (2017).

    Google Scholar 

  31. I. S. Vasil’evskii, G. B. Galiev, E. A. Klimov, V. G. Mokerov, S. S. Shirokov, R. M. Imamov, and I. A. Subbotin, Semiconductors 42, 1084 (2008).

    Article  ADS  Google Scholar 

  32. M. S. Mironova, V. I. Zubkov, A. L. Dudin, and G. F. Glinskii, in Proceedings of the 25th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, Russia, 2017, p. 118.

    Google Scholar 

  33. R. Zucca, J. Appl. Phys. 48, 1987 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Yakovlev.

Additional information

Original Russian Text © G.E. Yakovlev, M.V. Dorokhin, V.I. Zubkov, A.L. Dudin, A.V. Zdoroveyshchev, E.I. Malysheva, Yu.A. Danilov, B.N. Zvonkov, A.V. Kudrin, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 8, pp. 873–880.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, G.E., Dorokhin, M.V., Zubkov, V.I. et al. Specific Features of the Electrochemical Capacitance–Voltage Profiling of GaAs LED and pHEMT Structures with Quantum-Confined Regions. Semiconductors 52, 1004–1011 (2018). https://doi.org/10.1134/S1063782618080250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618080250

Navigation