Skip to main content
Log in

Degradation of the Photoluminescence of ZnTPP and ZnTPP–C60 Thin Films under Gamma Irradiation

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Porphyrins and their fullerene complexes are promising materials for organic photovoltaic structures. However, the stability of the properties of organic components under hard radiation is poorly studied. Here, the influence of γ irradiation with medium (about 104 Gy) and large (107 Gy) doses on the photoluminescence of thin structurally perfect films of both pure porphyrin ZnTPP and ZnTPP/C60 composite films in the molar ratio of 1.3: 1 is investigated. It is shown that the intensity of the electronic radiative transition (626 nm) decreases under the effect of γ irradiation, and the dose dependence is threshold. The threshold dose is ~20 kGy for the ZnTPP films. The intensity of the electron-vibrational part of the spectral dependence of the PL (670–690 nm) for both types of samples decreased at initial irradiation doses and decreases less with a further increase in the irradiation dose than for the purely electron transition. The addition of a fullerene in nanocomposite films increases the threshold dose, after which the PL of the films started to degrade, by a factor of ~2.5. Herewith, the spectral components of the PL associated with the manifestation of the radiation transition of the fullerene C60 are more stable under γ irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jurow, A. E. Schuckman, J. D. Batteas, and C. M. Drain, Coord. Chem. Rev. 254, 2297 (2010).

    Article  Google Scholar 

  2. A. Suzuki, K. Nishimura, and T. Oku, Electronics 3, 112 (2014).

    Article  Google Scholar 

  3. M. G. Walter, A. B. Rudineb, and C. C. Wamser, J. Porphyr. Phthalocyan. 14, 759 (2010).

    Article  Google Scholar 

  4. M. A. Elistratova, I. B. Zakharova, N. M. Romanov, V. Yu. Panevin, and O. E. Kvyatkovskii, Semiconductors 50, 1191 (2016).

    Article  ADS  Google Scholar 

  5. I. B. Zakharova, V. M. Ziminov, N. M. Romanov, O. E. Kvyatkovskii, and T. L. Makarova, Phys. Solid State 56, 1064 (2014).

    Article  ADS  Google Scholar 

  6. H. M. Zeyada, M. M. Makhlouf, and M. A. Ali, Jpn. J. Appl. Phys. 55, 022601 (2016).

    Article  ADS  Google Scholar 

  7. G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov’ev, Sov. Phys. Usp. 6, 67 (1963).

    Article  ADS  Google Scholar 

  8. S. K. Sugunan, B. Robotham, R. P. Sloan, J. Szmytkowski, K. P. Ghiggino, M. F. Paige, and R. P. Steer, J. Phys. Chem. A 115, 12217 (2011).

    Article  Google Scholar 

  9. J. C. Ostrowski, K. Susumu, M. R. Robinson, M. J. Therien, and G. C. Bazan, Adv. Mater. 15, 1296 (2003).

    Article  Google Scholar 

  10. C. Trinh, M. T. Whited, A. Steiner, C. J. Tassone, M. F. Toney, and M. E. Thompson, Chem. Mater. 24, 2583 (2012).

    Article  Google Scholar 

  11. X. L. Zhang, J. W. Jiang, Y. T. Liu, S. T. Lou, C. L. Gao, and Q. Y. Jin, Sci. Rep. 6, 22756 (2016).

    Article  ADS  Google Scholar 

  12. I. B. Zakharova, M. A. Elistratova, N. M. Romanov, and O. E. Kvyatkovskii, Semiconductors 52 (2018, in press).

  13. D. Sinha, T. Swu, S. P. Tripathy, R. Mishra, K. K. Dwivedi, and D. Fink, Radiat. Eff. Defects Solids 158, 531 (2003).

    Article  ADS  Google Scholar 

  14. A. Mizera, M. Manas, D. Manas, M. Stanek, J. Cerny, M. Bednarik, and M. Ovsik, Int. J. Math. Comput. Simul. 6, 584 (2012).

    Google Scholar 

  15. M. F. Zaki, J. Phys. D: Appl. Phys. 41, 175404 (2008).

    Article  ADS  Google Scholar 

  16. A. Tidjani and Y. Watanabe, J. Polym. Sci., Part A: Polym. Chem. 33, 1455 (1995).

    Article  ADS  Google Scholar 

  17. M. M. El-Nahass, H. M. Abd El-Khalek, and A. M. Nawar, Opt. Commun. 285, 1872 (2012).

    Article  ADS  Google Scholar 

  18. D. J. Y. S. Page, H. W. Bonin, V. T. Bui, and P. J. Bates, J. Appl. Polym. Sci. 86, 2713 (2002).

    Article  Google Scholar 

  19. M. M. El-Nahass, A. H. Ammar, A. A. Atta, A. A. M. Farag, and E. F. M. El-Zaidia, Opt. Commun. 284, 2259 (2011).

    Article  ADS  Google Scholar 

  20. F. Cataldo, G. Strazzulla, and S. Iglesias, Mon. Not. R. Astron. Soc. 394, 615 (2009).

    Article  ADS  Google Scholar 

  21. F. Cataldo, E. Lilla, O. Ursini, and G. Angelini, J. Radioanal. Nucl. Chem. 279, 31 (2009).

    Article  Google Scholar 

  22. S. P. Jovanovic, Z. M. Markovic, D. N. Kleut, D. D. Tosic, D. P. Kepic, M. T. Marinovic-Cincovic, and B. M. Todorovic-Markovic, Hem. Ind. 65, 479 (2011).

    Article  Google Scholar 

  23. V. A. Basiuk, G. Albarran, E. V. Basiuk, and J. M. Saniger, Adv. Space Res. 36, 173 (2005).

    Article  ADS  Google Scholar 

  24. F. Cataldoa, O. Ursinib, and G. Angelinib, Rad. Phys. Chem. 77, 742 (2008).

    Article  ADS  Google Scholar 

  25. A. M. Todd, T. Zhua, F. Zhang, C. U. Zhang, A. D. Berger, and J. Xu, Chem. Mater. 16, 4533 (2004).

    Article  Google Scholar 

  26. M. A. Elistratova. I. B. Zakharova, and N. M. Romanov, J. Phys.: Conf. Ser. 586, 012002 (2015).

    Google Scholar 

  27. N. M. Romanov and I. B. Zakharova, NTV SPbPU, No. 2 (242), 9 (2016).

    Google Scholar 

  28. I. B. Zakharova, O. E. Kvyatkovskii, E. G. Donenko, and Yu. F. Biryulin, Phys. Solid State 51, 1976 (2009).

    Article  ADS  Google Scholar 

  29. A. L. Litvinov, D. V. Konarev, A. Yu. Kovalevsky, P. Coppensband, and R. N. Lyubovskaya, Cryst. Eng. Commun. 5 (25), 137 (2003).

    Article  Google Scholar 

  30. E. Cavar, M. C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W. D. Schneider, Phys. Rev. Lett. 95, 196102 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Romanov.

Additional information

Original Russian Text © N.M. Romanov, M.A. Elistratova, E. Lahderanta, I.B. Zakharova, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 8, pp. 931–938.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, N.M., Elistratova, M.A., Lahderanta, E. et al. Degradation of the Photoluminescence of ZnTPP and ZnTPP–C60 Thin Films under Gamma Irradiation. Semiconductors 52, 1061–1067 (2018). https://doi.org/10.1134/S1063782618080183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618080183

Navigation