Skip to main content
Log in

Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Significant photocurrent/photoconductivity amplification is observed at low reverse biases in a type-II n-GaSb/InAs/p-GaSb heterostructure with a single quantum well (QW), grown by metal-organic vapor phase epitaxy. A sharp increase in the photocurrent by more than two orders of magnitude occurs under exposure of the heterostructure to monochromatic light with a wavelength of 1.2–1.6 μm (at 77 K) and the application of a reverse bias in the range 5–200 mV. The optical gain depends on the applied voltage and increases to 2.5 × 102 at a reverse bias of 800 mV. Theoretical analysis demonstrated that the main role in the phenomenon is played by the screening of the external electric field by electrons accumulated in the deep InAs QW and by the mechanism of the tunneling transport of carriers with a small effective mass. It is shown that the effect under study is common to both isotype and anisotype type-II heterojunctions, including structures with QWs and superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wei, A. Hood, H. Yau, A. Gin, M. Razeghi, M. Z. Tidrow, and V. Nathan, Appl. Phys. Lett. 86, 233106 (2005).

    Article  ADS  Google Scholar 

  2. M. Mikhailova, N. Stoyanov, I. Andreev, B. Zhurtanov, S. Kizhaev, E. Kunitsyna, K. Salikhov, and Yu. Yakovlev, Proc. SPIE 6585, 658526 (2007).

    Article  Google Scholar 

  3. M. Razeghi, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, E. K. Huang, and M. Z. Tidrow, Proc. SPIE 6940, 694009 (2008).

    Article  Google Scholar 

  4. P. K. D. D. P. Pitigala, Y. F. Lao, A. G. U. Perera, L. H. Li, E. H. Linfield, and H. C. Liu, J. Appl. Phys. 115, 063105 (2014).

    Article  ADS  Google Scholar 

  5. M. Ahmetoglu, B. Kucur, I. A. Andreev, E. V. Kunitsyna, M. P. Mikhailova, and Yu. P. Yakovlev, Acta Phys. Polon. A 127, 1007 (2015).

    Article  Google Scholar 

  6. E. V. Kunitsyna, E. A. Grebenshchikova, G. G. Konovalov, I. A. Andreev, and Yu. P. Yakovlev, Semiconductors 50, 1403 (2016).

    Article  ADS  Google Scholar 

  7. F. Capasso, in Semiconductors and Semimetals, Vol. 22: Lightwave Communications Technology: Photodetectors, Ed. by W. Tsang (Academic, New York, 1985), Chap. 1.

  8. J. Campbell, in Semiconductors and Semimetals, Vol. 22: Lightwave Communications Technology: Photodetectors, Ed. by W. Tsang (Academic, New York, 1985), Chap. 5.

  9. M. P. Mikhailova and A. N. Titkov, Semicond. Sci. Technol. 9, 1279 (1994).

    Article  ADS  Google Scholar 

  10. B. A. Wilson, IEEE J. Quant. Electron. 24, 1763 (1988).

    Article  ADS  Google Scholar 

  11. A. Milnes and D. Feucht, Heterojunctions and Metal Semiconductor Junctions (Mir, Moscow, 1975; Academic, New York, 1972), Chap. 4.

    Google Scholar 

  12. C. van Opdorp and J. Vrakking, Solid-State Electron. 10, 995 (1967).

    Google Scholar 

  13. S. Yawata and R. L. Anderson, Phys. Status Solidi 12, 297 (1965).

    Article  Google Scholar 

  14. I. A. Andreev, A. N. Baranov, M. A. Mirsagatov, M. P. Mikhailova, A. A. Rogachev, G. M. Filaretova, and Yu. P. Yakovlev, Sov. Tech. Phys. Lett. 14, 173 (1988).

    Google Scholar 

  15. R. V. Levin, V. N. Nevedomskii, B. V. Pushnyi, N. A. Bert, and M. N. Mizerov, Tech. Phys. Lett. 42, 96 (2016).

    Article  ADS  Google Scholar 

  16. L. V. Danilov, M. P. Mikhailova, E. V. Ivanov, G. G. Konovalov, E. A. Grebenschikova, R. V. Levin, B. V. Pushnyi, G. G. Zegrya, and Yu. P. Yakovlev, in Proceedings of the 24th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, Russia, 2016, p. 219.

    Google Scholar 

  17. Handbook Series on Semiconductor Parameters, Ed. by M. Levinstein, S. Rumyantsev, and M. Shur (World Scientific, Singapore, New York, London, Hong Kong, 1996), Vol. 1, Chap. 6.

  18. F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, and A. L. Hutchinson, Phys. Rev. Lett. 55, 1152 (1985).

    Article  ADS  Google Scholar 

  19. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. Lett. 63, 2670 (1993).

    Article  ADS  Google Scholar 

  20. L. V. Danilov, M. P. Mikhailova, I. A. Andreev, and G. G. Zegrya, Semiconductors 51, 1148 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Mikhailova.

Additional information

Original Russian Text © M.P. Mikhailova, I.A. Andreev, G.G. Konovalov, L.V. Danilov, E.V. Ivanov, E.V. Kunitsyna, N.D. Il’inskaya, R.V. Levin, B.V. Pushnyi, Yu.P. Yakovlev, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 8, pp. 906–911.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailova, M.P., Andreev, I.A., Konovalov, G.G. et al. Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW. Semiconductors 52, 1037–1042 (2018). https://doi.org/10.1134/S1063782618080146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618080146

Navigation