Skip to main content
Log in

Nonlinear Optical Properties of CdS/ZnS Quantum Dots in a High-Molecular-Weight Polyvinylpyrrolidone Matrix

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Sols containing core/shell CdS/ZnS semiconductor quantum dots are synthesized and their nonlinear properties, which are interesting for a large variety of applications in nanophotonics, are studied. The quantum dots produced are smaller in dimensions than the exciton Bohr radius and, therefore, exhibit a well-pronounced quantum-confinement effect. The nonlinear optical properties of low-concentration sols are studied upon exposure to laser pulses with an emission wavelength of 532 nm and a duration of 5 ns by the z-scan technique. The dependences of nonlinear optical coefficients on the concentration of CdS/ZnS quantum dots are obtained. The intensity dependence of two-photon absorption coefficients is presented. The dependence determines the boundary of the influence of high-order nonlinearities on the nonlinear transmittance of the samples. The mechanisms of optical limitation exhibited by sols, specifically, two-photon absorption, nonlinear refraction, and nonlinear scattering are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Venkatram, R. S. S. Kumar, and D. N. Rao, J. Appl. Phys. 100, 074309 (2006).

    Article  ADS  Google Scholar 

  2. C. Jing, X. Xu, X. Zhang, Z. Liu and J. Chu, J. Phys. D: Appl. Phys. 42, 075402 (2009).

    Article  ADS  Google Scholar 

  3. R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, J. Opt. A: Pure Appl. Opt. 5, 409 (2003).

    Article  ADS  Google Scholar 

  4. J. He, W. Ji, G. H. Ma, S. H. Tang, E. S. W. Kong, S. Y. Chow, X. H. Zhang, Z. L. Hua, and J. L. Shi, J. Phys. Chem. B 109, 4373 (2005).

    Article  Google Scholar 

  5. H. M. Gong, X. H. Wang, Y. M. Du, and Q. Q. Wang, J. Chem. Phys. 125, 024707 (2006).

    Article  ADS  Google Scholar 

  6. J. Szeremeta, M. Nyk, D. Wawrzynczyk, and M. Samoc, Nanoscale (2013). doi 10.1039/c3nr33860f

    Google Scholar 

  7. P. Ghosh, E. Ramya, P. K. Mohapatra, D. Kushavah, D. N. Rao, P. Vasa, K. C. Rustagi, and B. P. Singh, Mater. Sci. (2016); (https://doi.org/arxiv.org/abs/1606.02088).

    Google Scholar 

  8. H. Du, G. Q. Xu, W. S. Chin, L. Huang, and W. Ji, Chem. Mater. 14, 4473 (2002).

    Article  Google Scholar 

  9. Yu. P. Rakovich, M. V. Artemyev, A. G. Rolo, M. I. Vasilevskiy, and M. J. M. Gomes, Phys. Status Solidi B 224, 319 (2001).

    Article  ADS  Google Scholar 

  10. J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, W. X. Sun, Z. H. Zhang, and W. S. Chin, J. Appl. Phys. 95, 6381 (2004).

    Article  ADS  Google Scholar 

  11. R. E. Schwerzel, K. B. Spahr, J. P. Kurmer, V. E. Wood, and J. A. Jenkins, J. Phys. Chem. A 102, 5622 (1998).

    Article  Google Scholar 

  12. R. A. Al Aloosi and H. A. Jawad, Int. J. Adv. Res. Educ. Technol. 3, 146 (2016).

    Google Scholar 

  13. J. V. Antony, J. J. Pillai, P. Kurian, N. V. P. Nampoori, and G. E. Kochimoolayil, New J. Chem. (2017). doi 10.1039/C6NJ03665A

    Google Scholar 

  14. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and V. E. W. Stryland, J. Opt. Soc. Am. B 9, 405 (1992).

    Article  ADS  Google Scholar 

  15. S. Vempati, Y. Ertas, and T. Uyar, J. Phys. Chem. C 117, 21609 (2013).

    Article  Google Scholar 

  16. J. I. Kim, J. Kim, J. Lee, D.-R. Jung, H. Kim, H. Choi, S. Lee, S. Byun, S. Kang, and B. Park, Nanoscale Res. Lett. 7, 482 (2012).

    Article  ADS  Google Scholar 

  17. M. Pattabi, B. S. Amma, and K. Manzoor, Mater. Res. Bull. 42, 828 (2007).

    Article  Google Scholar 

  18. J. Tauc, Mater. Res. Bull. 3, 37 (1968).

    Article  Google Scholar 

  19. N. S. Kozhevnikova, A. S. Vorokh, and A. A. Uritskaya, Russ. Chem. Rev. 84, 225 (2015).

    Article  ADS  Google Scholar 

  20. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  21. M. R. Kim, Y.-M. Kang, and D.-J. Jang, J. Phys. Chem. C 111, 18507 (2007).

    Article  Google Scholar 

  22. O. Zelaya-Angel, J. J. Alvarado-Gil, R. Lozada-Morales, H. Vargas, and A. Ferreira da Silva, Appl. Phys. Lett. 64, 281 (1994).

    Article  ADS  Google Scholar 

  23. K. S. Evstrop’ev, Yu. A. Gatchin, S. K. Evstrop’ev, K. V. Dukel’skii, I. M. Kislyakov, N. A. Pegasova, and I. V. Bagrov, Opt. Spectrosc. 120, 415 (2016).

    Article  ADS  Google Scholar 

  24. L. Sarayanan, S. Diwakar, R. Mohankumar, A. Pandurangan, and R. Jayavel, Nanomater. Nanotechnol. 1, 42 (2001).

    Google Scholar 

  25. J. Wei, Springer Ser. Opt. Sci. 191, 25 (2015).

    Google Scholar 

  26. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, Opt. Commun. 190, 351 (2001).

    Article  ADS  Google Scholar 

  27. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

    Google Scholar 

  28. T. Ning, P. Gao, W. Wang, H. Lu, W. Fu, Y. Zhou, D. Zhang, X. Bai, E. Wang, and G. Yang, Phys. E (Amsterdam, Neth.) 41, 715 (2009).

    Article  Google Scholar 

  29. Y. Masumoto and T. Takagahara, Semiconductor Quantum Dots Physics, Spectroscopy and Applications (Springer, Berlin, Heidelberg, New York, 2002).

    Book  Google Scholar 

  30. R. W. Boyd, Nonlinear Optics (Academic, New York, 2003).

    Google Scholar 

  31. A. C. Panfutova, Extended Abstract of Cand. Sci. Dissertation (Vavilov State Optic. Inst., St. Petersburg, 2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kulagina.

Additional information

Original Russian Text © A.S. Kulagina, S.K. Evstropiev, N.N. Rosanov, V.V. Vlasov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 8, pp. 865–872.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulagina, A.S., Evstropiev, S.K., Rosanov, N.N. et al. Nonlinear Optical Properties of CdS/ZnS Quantum Dots in a High-Molecular-Weight Polyvinylpyrrolidone Matrix. Semiconductors 52, 997–1003 (2018). https://doi.org/10.1134/S1063782618080110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618080110

Navigation