Advertisement

Semiconductors

, Volume 52, Issue 6, pp 809–815 | Cite as

Laser-Induced Modification of the Surface of Ge2Sb2Te5 Thin Films: Phase Changes and Periodic-Structure Formation

  • S. A. Yakovlev
  • A. V. Ankudinov
  • Yu. V. Vorobyov
  • M. M. Voronov
  • S. A. Kozyukhin
  • B. T. Melekh
  • A. B. Pevtsov
Fabrication, Treatment, and Testing of Materials and Structures
  • 31 Downloads

Abstract

Submicron periodic lattices are formed at the surface of phase-change-memory film materials based on the complex chalcogenide Ge2Sb2Te5 when exposed to nanosecond laser pulses. The geometric characteristics and structural properties of laser-induced lattices are studied by optical and atomic-force microscopies and Raman spectroscopy. It is shown that, at appropriately chosen parameters of exposure to laser radiation, it is possible to implement periodic modulation of the refractive index in the structures formed. Modulation is due to the postexposure solidification of grating ridges and valleys in different phase states, whose dielectric constants widely differ from each other. In the vicinity of the maxima of the wavy structure, the amorphous state is mainly formed, whereas in the region of minima, the Ge2Sb2Te5 structure corresponds mainly to the crystalline phase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phase-Change Materials: Science and Applications, Ed. by S. Raoux and M. Wuttig (Springer Science, New York, 2010).Google Scholar
  2. 2.
    G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, J. Vac. Sci. Technol. B 28, 223 (2010).CrossRefGoogle Scholar
  3. 3.
    B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger, IEEE Micro 30, 143 (2010).CrossRefGoogle Scholar
  4. 4.
    N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys. 69, 2849 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Liu, M. M. Aziz, A. Shalini, C. D. Wright, and R. J. Hicken, J. Appl. Phys. 112, 123526 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    X. Sun, M. Ehrhardt, A. Lotnyk, P. Lorenz, E. Thelander, J. W. Gerlach, T. Smausz, U. Decker, and B. Rauschenbach, Sci. Rep. 6, 28246 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    W. P. Zhou, F. R. Liu, N. Bai, Y. H. Wan, X. Lin, and J. M. Chen, Appl. Surf. Sci. 285, 97 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    D. C. Emmony, R. P. Howson, and L. J. Willis, Appl. Phys. Lett. 23, 598 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, Phys. Rev. B 27, 1155 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    S. A. Akhmanov, V. I. Emel’yanov, N. I. Voroteev, and V. N. Seminogov, Sov. Phys. Usp. 28, 1084 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, Appl. Phys. Lett. 105, 031907 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    R. Drevinskas, M. Beresna, M. Gecevic[hacek]ius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, Appl. Phys. Lett. 106, 171106 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, Appl. Phys. Lett. 109, 051103 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    M. Wuttig, H. Bhaskaranand, and T. Taubner, Nat. Photon. 11, 465 (2017).CrossRefGoogle Scholar
  15. 15.
    S. A. Yakovlev, A. B. Pevtsov, P. V. Fomin, B. T. Melekh, E. Yu. Trofimova, D. A. Kurdyukov, and V. G. Golubev, Tech. Phys. Lett. 38, 768 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    S. Kozyukhin, Y. Vorobyov, A. Sherchenkov, A. Babich, N. Vishnyakov, and O. Boytsova, Phys. Status Solidi A 213, 1831 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    A. B. Pevtsov, A. N. Poddubny, S. A. Yakovlev, D. A. Kurdyukov, and V. G. Golubev, J. Appl. Phys. 113, 144311 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    M. K. El-Adawi, M. A. Abdel-Naby, and S. A. Shalaby, Int. J. Heat Mass Transfer 38, 947 (1995).CrossRefGoogle Scholar
  19. 19.
    K. D. Cole, J. V. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions, 2nd ed. (CRC, New York, 2011).zbMATHGoogle Scholar
  20. 20.
    J. H. Bechtel, J. Appl. Phys. 46, 1585 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    S. A. Dyakov, N. A. Gippius, M. M. Voronov, S. A. Yakovlev, A. B. Pevtsov, I. A. Akimov, and S. G. Tikhodeev, Phys. Rev. B 96, 045426 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    W. K. Njoroge, H.-W. Wöltgens, and M. Wuttig, J. Vac. Sci. Technol. A 20, 230 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, J. Appl. Phys. 107, 44314 (2010).CrossRefGoogle Scholar
  24. 24.
    H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-k. Cheong, Appl. Phys. Lett. 89, 151904 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    Handbook of Chemistry and Physics, 90th ed., Ed. by D. R. Lide (CRC, Boca Raton, FL, 2009).Google Scholar
  26. 26.
    K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. Tominaga, J. Phys. Chem. Solids 68, 1074 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    R. de Bastiani, A. M. Piro, M. G. Grimaldi, E. Rimini, G. A. Baratta, and G. Strazzulla, Appl. Phys. Lett. 92, 241925 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, Nat. Mater. 3, 703 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    P. Nemec, A. Moreac, V. Nazabal, M. Pavlišta, J. Prikryl, and M. Frumar, J. Appl. Phys. 106, 103509 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, A. V. Kolobov, M. Ribes, and J. Tominaga, J. Phys.: Condens. Matter 18, 965 (2006).ADSGoogle Scholar
  31. 31.
    A. A. Sherchenkov, S. A. Kozyukhin, and E. V. Gorshkova, J. Optoelectron. Adv. Mater. 11, 26 (2009).Google Scholar
  32. 32.
    J. A. Kalb, F. Spaepen, and M. Wuttig, J. Appl. Phys. 94, 4908 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    K. Ohara, L. Temleitner, K. Sugimoto, S. Kohara, T. Matsunaga, L. Pusztai, M. Itou, H. Ohsumi, R. Kojima, N. Yamada, T. Usuki, A. Fujiwara, and M. Takata, Adv. Funct. Mater. 22, 2251 (2012).CrossRefGoogle Scholar
  34. 34.
    M. M. Voronov, A. B. Pevtsov, S. A. Yakovlev, D. A. Kurdyukov, and V. G. Golubev, Phys. Rev. B 89, 045302 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Yakovlev
    • 1
  • A. V. Ankudinov
    • 1
    • 2
  • Yu. V. Vorobyov
    • 3
  • M. M. Voronov
    • 1
  • S. A. Kozyukhin
    • 4
  • B. T. Melekh
    • 1
  • A. B. Pevtsov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.Ryazan State Radio Engineering UniversityRyazanRussia
  4. 4.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations