Advertisement

Semiconductors

, Volume 52, Issue 6, pp 734–738 | Cite as

X-Ray Diffraction Analysis of Features of the Crystal Structure of GaN/Al0.32Ga0.68N HEMT-Heterostructures by the Williamson–Hall Method

  • S. S. Pushkarev
  • M. M. Grekhov
  • N. V. Zenchenko
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • 20 Downloads

Abstract

The fitting of θ/2θ and ω peaks in X-ray diffraction curves is shown to be most accurate in the case of using an inverse fourth-degree polynomial or probability density function with Student’s distribution (Pearson type VII function). These functions describe well both the highest-intensity central part of the experimental peak and its low-intensity broadened base caused by X-ray diffuse scattering. The mean microdeformation ε and mean vertical domain size D are determined by the Williamson–Hall method for layers of GaN (ε ≈ 0.00006, D ≈ 200 nm) and Al0.32Ga0.68N (ε = 0.0032 ± 0.0005, D = 24 ± 7 nm). The D value obtained for the Al0.32Ga0.68N layer is most likely to result from the nominal thickness of this layer, which is 11 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. N. Tomosh, A. Yu. Pavlov, V. Yu. Pavlov, R. A. Khabibullin, S. S. Arutyunyan, and P. P. Maltsev, Semiconductors 50, 1416 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    D. N. Slapovskii, A. Yu. Pavlov, V. Yu. Pavlov, and A. V. Klekovkin, Semiconductors 51, 438 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Gruzdov, Yu. V. Kolkovskii, and Yu. A. Kontsevoi, Control of New Technologies in Solid-State Microwave Electronics (Tekhnosfera, Moscow, 2016) [in Russian].Google Scholar
  4. 4.
    R. N. Kyutt and A. A. Dyshekov, Tech. Phys. Lett. 37, 306 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  6. 6.
    V. I. Iveronova, Theory of X-Ray Scattering (Mosk. Gos. Univ., Moscow, 1978) [in Russian].Google Scholar
  7. 7.
    Yu. V. Ponomarchuk, Extended Abstract of Cand. Sci. (Phys. Math.) Dissertation (Kemerovo State Univ., Kemerovo, 2015).Google Scholar
  8. 8.
    R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, J. Appl. Phys. 93, 8918 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    I. S. Vasil’evskii, S. S. Pushkarev, M. M. Grekhov, A. N. Vinichenko, D. V. Lavrukhin, and O. S. Kolentsova, Semiconductors 50, 559 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Zhenyang Zhong, O. Ambacher, A. Link, V. Holy, J. Stangl, R. T. Lechner, T. Roch, and G. Bauer, Appl. Phys. Lett. 80, 3521 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. S. Pushkarev
    • 1
  • M. M. Grekhov
    • 2
  • N. V. Zenchenko
    • 1
  1. 1.Institute of Ultrahigh-Frequency Semiconductor ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations