Advertisement

Semiconductors

, Volume 52, Issue 6, pp 729–733 | Cite as

Study of the Structural and Luminescence Properties of InAs/GaAs Heterostructures with Bi-Doped Potential Barriers

  • A. S. Pashchenko
  • L. S. Lunin
  • S. N. Chebotarev
  • M. L. Lunina
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

The influence of Bi in GaAs barrier layers on the structural and optical properties of InAs/GaAs quantum-dot heterostructures is studied. By atomic-force microscopy and Raman spectroscopy, it is established that the introduction of Bi into GaAs to a content of up to 5 at % results in a decrease in the density of InAs quantum dots from 1.58 × 1010 to 0.93 × 1010 cm–2. The effect is defined by a decrease in the mismatch between the crystal-lattice parameters at the InAs/GaAsBi heterointerface. In this case, an increase in the height of InAs quantum dots is detected. This increase is apparently due to intensification of the surface diffusion of In during growth at the GaAsBi surface. Analysis of the luminescence properties shows that the doping of GaAs potential barriers with Bi is accompanied by a red shift of the emission peak related to InAs quantum dots and by a decrease in the width of this peak.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, F. I. Zubov, M. V. Maximov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, V.-M. Korpijärvi, T. Niemi, R. Isoaho, M. Guina, M. V. Lebedev, T. V. Lvova, and A. E. Zhukov, J. Appl. Phys. 120, 233103 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    F. I. Zubov, N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, O. I. Simchuk, M. M. Kulagina, Y.M. Zadiranov, S. I. Troshkov, A. A. Lipovskii, M. V. Maximov, and A. E. Zhukov, Semiconductors 50, 1408 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    A. E. Zhukov and A. R. Kovsh, Quantum Electron. 38, 409 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    A. M. Nadtochiy, S. A. Mintairov, N. A. Kalyuzhnyy, S. S. Rouvimov, Y. M. Shernyakov, A. S. Payusov, M. V. Maximov, and A. E. Zhukov, Semiconductors 49, 1090 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    G. S. Sokolovskii, E. A. Viktorov, M. Abusaa, J. Danckaert, V. V. Dudelev, E. D. Kolykhalova, K. K. Soboleva, A. G. Deryagin, I. I. Novikov, M. V. Maximov, A. E. Zhukov, V. M. Ustinov, V. I. Kuchinskii, W. Sibbett, E. U. Rafailov, and T. Erneux, Appl. Phys. Lett. 106, 261103 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    N. A. Kalyuzhnyy, S. A. Mintairov, R. A. Salii, A. M. Nadtochiy, A. S. Payusov, P. N. Brunkov, V. N. Nevedomsky, M. Z. Shvarts, A. Martí, V.M. Andreev, and A. Luque, Prog. Photovolt.: Res. Appl. 24, 1261 (2016).CrossRefGoogle Scholar
  7. 7.
    E. López, A. Datas, I. Ramiro, P. G. Linares, E. Antolín, I. Artacho, A. Martí, A. Luque, Y. Shoji, T. Sogabe, A. Ogura, and Y. Okada, Solar Energy Mater. Sol. Cells 149, 15 (2016).CrossRefGoogle Scholar
  8. 8.
    L. S. Lunin, I. A. Sysoev, D. L. Alfimova, S. N. Chebotarev, and A. S. Pashchenko, J. Surf. Inv. 5, 559 (2011).CrossRefGoogle Scholar
  9. 9.
    S. N. Chebotarev, A. S. Pashchenko, A. Williamson, L. S. Lunin, V. A. Irkha, and V. A. Gamidov, Tech. Phys. Lett. 41, 661 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. Ryzhii, V. Pipa, I. Khmyrova, V. Mitin, and M. Willander, Jpn. J. Appl. Phys. B 39, L1283 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    V. Ryzhii, J. Appl. Phys. 89, 5117 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    J. Phillips, J. Appl. Phys. 91, 4590 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    K. Hirakawa, S.-W. Lee, P. Lelong, S. Fujimoto, K. Hirotani, and H. Sakaki, Microelectron. Eng. 63, 185 (2002).CrossRefGoogle Scholar
  14. 14.
    P. N. Brunkov, A. R. Kovsh, V. M. Ustinov, Yu. G. Musikhin, N. N. Ledentsov, S. G. Konnikov, A. Polimeni, A. Patanè, P. C. Main, L. Eaves, and C. M. A. Kapteyn, J. Electron. Mater. 28, 486 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, J. Phys. D: Appl. Phys. 38, 2135 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    A. I. Yakimov, A. V. Dvurechenskii, Y. Y. Proskuryakov, A. I. Nikiforov, O. P. Pchelyakov, S. A. Teys, and A. K. Gutakovskii, Appl. Phys. Lett. 75, 1413 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    M. Kudo, T. Mishima, S. Iwamoto, T. Nakaoka, and Y. Arakawa, Phys. E: Low-Dim. Syst. Nanostruct. 21, 275 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    Z. Shuhui, W. Lu, S. Zhenwu, C. Yanxiang, T. Haitao, G. Huaiju, J. Haiqiang, W. Wenxin, C. Hong, and Z. Liancheng, Nanoscale Res. Lett. 7, 87 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    J. Böhrer, A. Krost, and D. Bimberg, Appl. Phys. Lett. 64, 1992 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    M. Hayne, R. Provoost, M. K. Zundel, Y. M. Manz, K. Eberl, and V. V. Moshchalkov, Phys. Rev. B 62, 10324 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    M. Sugisaki, H.-W. Ren, S. Nair, K. Nishi, and Y. Masumoto, Phys. Rev. B 66, 235309 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    E. Ribeiro, R. L. Maltez, W. Carvalho, D. Ugarte, and G. Medeiros-Ribeiro, Appl. Phys. Lett. 81, 2953 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    G. Liu, S.-L. Chuang, and S.-H. Park, J. Appl. Phys. 88, 5554 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    B. Liang, A. Lin, N. Pavarelli, C. Reyner, J. Tatebayashi, K. Nunna, J. He, T. J. Ochalski, G. Huyet, and D. L. Huffaker, Nanotechnology 20, 455604 (2009).CrossRefGoogle Scholar
  25. 25.
    L. S. Lunin, I. A. Sysoev, L. V. Blagina, A. V. Blagin, and A. A. Barannik, Inorg. Mater. 45, 841 (2009).CrossRefGoogle Scholar
  26. 26.
    D. L. Alfimova, L. S. Lunin, and M. L. Lunina, Inorg. Mater. 50, 113 (2014).CrossRefGoogle Scholar
  27. 27.
    D. F. Reyes, F. Bastiman, C. J. Hunter, D. L. Sales, A. M. Sanchez, J. P. R. David, and D. González, Nanoscale Res. Lett. 9, 23 (2014).CrossRefGoogle Scholar
  28. 28.
    A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, J. Cryst. Growth 338, 107 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    A. Janotti, S.-H. Wei, and S. B. Zhang, Phys. Rev. B 65, 115203 (2002).ADSCrossRefGoogle Scholar
  30. 30.
    L. S. Lunin, A. V. Blagin, and V. A. Ovchinnikov, Poverkhnost’, No. 5, 11 (2002).Google Scholar
  31. 31.
    S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, J. Appl. Phys. 99, 046104 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    D. P. Popescu, P. G. Eliseev, A. Stintz, and K. J. Malloy, Semicond. Sci. Technol. 19, 33 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    V. V. Mamutin, A. Y. Egorov, N. V. Kryzhanovskaya, V. S. Mikhrin, A. M. Nadiochy, and E. V. Pirogov, Semiconductors 42, 805 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    J. Wu, W. Shan, and W. Walukiewicz, Semicond. Sci. Technol. 17, 860 (2002).ADSCrossRefGoogle Scholar
  36. 36.
    J. G. Keizer, J. M. Ulloa, A. D. Utrilla, and P. M. Koenraad, Appl. Phys. Lett. 104, 053116 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    A. D. Utrilla, D. F. Reyes, J. M. Ulloa, D. González, T. Ben, A. Guzman, and A. Hierro, Appl. Phys. Lett. 105, 043105 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    L. S. Lunin, S. N. Chebotarev, A. S. Pashchenko, and L. N. Bolobanova, Inorg. Mater. 48, 439 (2012).CrossRefGoogle Scholar
  39. 39.
    A. S. Pashchenko, S. N. Chebotarev, L. S. Lunin, and V. A. Irkha, Semiconductors 50, 545 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    L. S. Lunin, I. A. Sysoev, D. L. Alfimova, S. N. Chebotarev, and A. S. Pashchenko, Inorg. Mater. 47, 816 (2011).CrossRefGoogle Scholar
  41. 41.
    A. S. Pashchenko, S. N. Chebotarev, and L. S. Lunin, Inorg. Mater. 51, 197 (2015).CrossRefGoogle Scholar
  42. 42.
    S. N. Chebotarev, A. S. Pashchenko, A. Williamson, L. S. Lunin, V. A. Irkha, and V. A. Gamidov, Tech. Phys. Lett. 41, 661 (2015).ADSCrossRefGoogle Scholar
  43. 43.
    S. N. Chebotarev, A. S. Pashchenko, V. A. Irkha, and M. L. Lunina, J. Nanotechnol. 2016, 5340218 (2016).CrossRefGoogle Scholar
  44. 44.
    S. N. Chebotarev, A. S. Pashchenko, L. S. Lunin, E. N. Zhivotova, G. A. Erimeev, and M. L. Lunina, Beilstein J. Nanotechnol. 8, 12 (2017).CrossRefGoogle Scholar
  45. 45.
    J. A. Steele, R. A. Lewis, J. Horvat, M. J. B. Nancarrow, M. Henini, D. Fan, Y. I. Mazur, M. Schmidbauer, M. E. Ware, S.-Q. Yu, and G. J. Salamo, Sci. Rep. 6, 28860 (2016).ADSCrossRefGoogle Scholar
  46. 46.
    R. B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, Appl. Phys. Lett. 101, 082112 (2012).ADSCrossRefGoogle Scholar
  47. 47.
    X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, Appl. Phys. Lett. 92, 192110 (2008).ADSCrossRefGoogle Scholar
  48. 48.
    X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, Appl. Phys. Lett. 95, 041903 (2009).ADSCrossRefGoogle Scholar
  49. 49.
    K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, Appl. Phys. Lett. 91, 051909 (2007).ADSCrossRefGoogle Scholar
  50. 50.
    A. Rogalski, Opto-Electron. Rev. 16, 458 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Pashchenko
    • 1
    • 2
  • L. S. Lunin
    • 1
    • 2
  • S. N. Chebotarev
    • 1
    • 2
  • M. L. Lunina
    • 1
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Platov South-Russian State Polytechnic University (NPI)NovocherkasskRussia

Personalised recommendations