Skip to main content
Log in

Study of the Structural and Luminescence Properties of InAs/GaAs Heterostructures with Bi-Doped Potential Barriers

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The influence of Bi in GaAs barrier layers on the structural and optical properties of InAs/GaAs quantum-dot heterostructures is studied. By atomic-force microscopy and Raman spectroscopy, it is established that the introduction of Bi into GaAs to a content of up to 5 at % results in a decrease in the density of InAs quantum dots from 1.58 × 1010 to 0.93 × 1010 cm–2. The effect is defined by a decrease in the mismatch between the crystal-lattice parameters at the InAs/GaAsBi heterointerface. In this case, an increase in the height of InAs quantum dots is detected. This increase is apparently due to intensification of the surface diffusion of In during growth at the GaAsBi surface. Analysis of the luminescence properties shows that the doping of GaAs potential barriers with Bi is accompanied by a red shift of the emission peak related to InAs quantum dots and by a decrease in the width of this peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, F. I. Zubov, M. V. Maximov, A. A. Lipovskii, M. M. Kulagina, S. I. Troshkov, V.-M. Korpijärvi, T. Niemi, R. Isoaho, M. Guina, M. V. Lebedev, T. V. Lvova, and A. E. Zhukov, J. Appl. Phys. 120, 233103 (2016).

    Article  ADS  Google Scholar 

  2. F. I. Zubov, N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, O. I. Simchuk, M. M. Kulagina, Y.M. Zadiranov, S. I. Troshkov, A. A. Lipovskii, M. V. Maximov, and A. E. Zhukov, Semiconductors 50, 1408 (2016).

    Article  ADS  Google Scholar 

  3. A. E. Zhukov and A. R. Kovsh, Quantum Electron. 38, 409 (2008).

    Article  ADS  Google Scholar 

  4. A. M. Nadtochiy, S. A. Mintairov, N. A. Kalyuzhnyy, S. S. Rouvimov, Y. M. Shernyakov, A. S. Payusov, M. V. Maximov, and A. E. Zhukov, Semiconductors 49, 1090 (2015).

    Article  ADS  Google Scholar 

  5. G. S. Sokolovskii, E. A. Viktorov, M. Abusaa, J. Danckaert, V. V. Dudelev, E. D. Kolykhalova, K. K. Soboleva, A. G. Deryagin, I. I. Novikov, M. V. Maximov, A. E. Zhukov, V. M. Ustinov, V. I. Kuchinskii, W. Sibbett, E. U. Rafailov, and T. Erneux, Appl. Phys. Lett. 106, 261103 (2015).

    Article  ADS  Google Scholar 

  6. N. A. Kalyuzhnyy, S. A. Mintairov, R. A. Salii, A. M. Nadtochiy, A. S. Payusov, P. N. Brunkov, V. N. Nevedomsky, M. Z. Shvarts, A. Martí, V.M. Andreev, and A. Luque, Prog. Photovolt.: Res. Appl. 24, 1261 (2016).

    Article  Google Scholar 

  7. E. López, A. Datas, I. Ramiro, P. G. Linares, E. Antolín, I. Artacho, A. Martí, A. Luque, Y. Shoji, T. Sogabe, A. Ogura, and Y. Okada, Solar Energy Mater. Sol. Cells 149, 15 (2016).

    Article  Google Scholar 

  8. L. S. Lunin, I. A. Sysoev, D. L. Alfimova, S. N. Chebotarev, and A. S. Pashchenko, J. Surf. Inv. 5, 559 (2011).

    Article  Google Scholar 

  9. S. N. Chebotarev, A. S. Pashchenko, A. Williamson, L. S. Lunin, V. A. Irkha, and V. A. Gamidov, Tech. Phys. Lett. 41, 661 (2015).

    Article  ADS  Google Scholar 

  10. V. Ryzhii, V. Pipa, I. Khmyrova, V. Mitin, and M. Willander, Jpn. J. Appl. Phys. B 39, L1283 (2000).

    Article  ADS  Google Scholar 

  11. V. Ryzhii, J. Appl. Phys. 89, 5117 (2001).

    Article  ADS  Google Scholar 

  12. J. Phillips, J. Appl. Phys. 91, 4590 (2002).

    Article  ADS  Google Scholar 

  13. K. Hirakawa, S.-W. Lee, P. Lelong, S. Fujimoto, K. Hirotani, and H. Sakaki, Microelectron. Eng. 63, 185 (2002).

    Article  Google Scholar 

  14. P. N. Brunkov, A. R. Kovsh, V. M. Ustinov, Yu. G. Musikhin, N. N. Ledentsov, S. G. Konnikov, A. Polimeni, A. Patanè, P. C. Main, L. Eaves, and C. M. A. Kapteyn, J. Electron. Mater. 28, 486 (1999).

    Article  ADS  Google Scholar 

  15. S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, J. Phys. D: Appl. Phys. 38, 2135 (2005).

    Article  ADS  Google Scholar 

  16. A. I. Yakimov, A. V. Dvurechenskii, Y. Y. Proskuryakov, A. I. Nikiforov, O. P. Pchelyakov, S. A. Teys, and A. K. Gutakovskii, Appl. Phys. Lett. 75, 1413 (1999).

    Article  ADS  Google Scholar 

  17. M. Kudo, T. Mishima, S. Iwamoto, T. Nakaoka, and Y. Arakawa, Phys. E: Low-Dim. Syst. Nanostruct. 21, 275 (2004).

    Article  ADS  Google Scholar 

  18. Z. Shuhui, W. Lu, S. Zhenwu, C. Yanxiang, T. Haitao, G. Huaiju, J. Haiqiang, W. Wenxin, C. Hong, and Z. Liancheng, Nanoscale Res. Lett. 7, 87 (2012).

    Article  ADS  Google Scholar 

  19. J. Böhrer, A. Krost, and D. Bimberg, Appl. Phys. Lett. 64, 1992 (1994).

    Article  ADS  Google Scholar 

  20. M. Hayne, R. Provoost, M. K. Zundel, Y. M. Manz, K. Eberl, and V. V. Moshchalkov, Phys. Rev. B 62, 10324 (2000).

    Article  ADS  Google Scholar 

  21. M. Sugisaki, H.-W. Ren, S. Nair, K. Nishi, and Y. Masumoto, Phys. Rev. B 66, 235309 (2002).

    Article  ADS  Google Scholar 

  22. E. Ribeiro, R. L. Maltez, W. Carvalho, D. Ugarte, and G. Medeiros-Ribeiro, Appl. Phys. Lett. 81, 2953 (2002).

    Article  ADS  Google Scholar 

  23. G. Liu, S.-L. Chuang, and S.-H. Park, J. Appl. Phys. 88, 5554 (2000).

    Article  ADS  Google Scholar 

  24. B. Liang, A. Lin, N. Pavarelli, C. Reyner, J. Tatebayashi, K. Nunna, J. He, T. J. Ochalski, G. Huyet, and D. L. Huffaker, Nanotechnology 20, 455604 (2009).

    Article  Google Scholar 

  25. L. S. Lunin, I. A. Sysoev, L. V. Blagina, A. V. Blagin, and A. A. Barannik, Inorg. Mater. 45, 841 (2009).

    Article  Google Scholar 

  26. D. L. Alfimova, L. S. Lunin, and M. L. Lunina, Inorg. Mater. 50, 113 (2014).

    Article  Google Scholar 

  27. D. F. Reyes, F. Bastiman, C. J. Hunter, D. L. Sales, A. M. Sanchez, J. P. R. David, and D. González, Nanoscale Res. Lett. 9, 23 (2014).

    Article  Google Scholar 

  28. A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, J. Cryst. Growth 338, 107 (2012).

    Article  ADS  Google Scholar 

  29. A. Janotti, S.-H. Wei, and S. B. Zhang, Phys. Rev. B 65, 115203 (2002).

    Article  ADS  Google Scholar 

  30. L. S. Lunin, A. V. Blagin, and V. A. Ovchinnikov, Poverkhnost’, No. 5, 11 (2002).

    Google Scholar 

  31. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).

    Article  ADS  Google Scholar 

  32. H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, J. Appl. Phys. 99, 046104 (2006).

    Article  ADS  Google Scholar 

  33. D. P. Popescu, P. G. Eliseev, A. Stintz, and K. J. Malloy, Semicond. Sci. Technol. 19, 33 (2004).

    Article  ADS  Google Scholar 

  34. V. V. Mamutin, A. Y. Egorov, N. V. Kryzhanovskaya, V. S. Mikhrin, A. M. Nadiochy, and E. V. Pirogov, Semiconductors 42, 805 (2008).

    Article  ADS  Google Scholar 

  35. J. Wu, W. Shan, and W. Walukiewicz, Semicond. Sci. Technol. 17, 860 (2002).

    Article  ADS  Google Scholar 

  36. J. G. Keizer, J. M. Ulloa, A. D. Utrilla, and P. M. Koenraad, Appl. Phys. Lett. 104, 053116 (2014).

    Article  ADS  Google Scholar 

  37. A. D. Utrilla, D. F. Reyes, J. M. Ulloa, D. González, T. Ben, A. Guzman, and A. Hierro, Appl. Phys. Lett. 105, 043105 (2014).

    Article  ADS  Google Scholar 

  38. L. S. Lunin, S. N. Chebotarev, A. S. Pashchenko, and L. N. Bolobanova, Inorg. Mater. 48, 439 (2012).

    Article  Google Scholar 

  39. A. S. Pashchenko, S. N. Chebotarev, L. S. Lunin, and V. A. Irkha, Semiconductors 50, 545 (2016).

    Article  ADS  Google Scholar 

  40. L. S. Lunin, I. A. Sysoev, D. L. Alfimova, S. N. Chebotarev, and A. S. Pashchenko, Inorg. Mater. 47, 816 (2011).

    Article  Google Scholar 

  41. A. S. Pashchenko, S. N. Chebotarev, and L. S. Lunin, Inorg. Mater. 51, 197 (2015).

    Article  Google Scholar 

  42. S. N. Chebotarev, A. S. Pashchenko, A. Williamson, L. S. Lunin, V. A. Irkha, and V. A. Gamidov, Tech. Phys. Lett. 41, 661 (2015).

    Article  ADS  Google Scholar 

  43. S. N. Chebotarev, A. S. Pashchenko, V. A. Irkha, and M. L. Lunina, J. Nanotechnol. 2016, 5340218 (2016).

    Article  Google Scholar 

  44. S. N. Chebotarev, A. S. Pashchenko, L. S. Lunin, E. N. Zhivotova, G. A. Erimeev, and M. L. Lunina, Beilstein J. Nanotechnol. 8, 12 (2017).

    Article  Google Scholar 

  45. J. A. Steele, R. A. Lewis, J. Horvat, M. J. B. Nancarrow, M. Henini, D. Fan, Y. I. Mazur, M. Schmidbauer, M. E. Ware, S.-Q. Yu, and G. J. Salamo, Sci. Rep. 6, 28860 (2016).

    Article  ADS  Google Scholar 

  46. R. B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, Appl. Phys. Lett. 101, 082112 (2012).

    Article  ADS  Google Scholar 

  47. X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, Appl. Phys. Lett. 92, 192110 (2008).

    Article  ADS  Google Scholar 

  48. X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, Appl. Phys. Lett. 95, 041903 (2009).

    Article  ADS  Google Scholar 

  49. K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, Appl. Phys. Lett. 91, 051909 (2007).

    Article  ADS  Google Scholar 

  50. A. Rogalski, Opto-Electron. Rev. 16, 458 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pashchenko.

Additional information

Original Russian Text © A.S. Pashchenko, L.S. Lunin, S.N. Chebotarev, M.L. Lunina, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 6, pp. 581–585.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchenko, A.S., Lunin, L.S., Chebotarev, S.N. et al. Study of the Structural and Luminescence Properties of InAs/GaAs Heterostructures with Bi-Doped Potential Barriers. Semiconductors 52, 729–733 (2018). https://doi.org/10.1134/S1063782618060180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618060180

Navigation