Skip to main content
Log in

Effect of the Sapphire-Nitridation Level and Nucleation-Layer Enrichment with Aluminum on the Structural Properties of AlN Layers

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of atomic aluminum deposited onto sapphire substrates with different nitridation levels on the quality of AlN layers grown by ammonia molecular-beam epitaxy is investigated. The nitridation of sapphire with the formation of ~1 monolayer of AlN is shown to ensure the growth of layers with a smoother surface and better crystal quality than in the case of the formation of a nitrided AlN layer with a thickness of ~2 monolayers. It is demonstrated that the change in the duration of exposure of nitrided substrates to the atomic aluminum flux does not significantly affect the parameters of subsequent AlN layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Strite and H. Morkoc, J. Vac. Sci. Technol. 10, 1237 (1992).

    Article  Google Scholar 

  2. T. Yamaguchi, T. Araki, Y. Saito, K. Kano, H. Kanazawa, Y. Nanishi, N. Teraguchi, and A. Suzuki, J. Cryst. Growth 237–239, 993 (1994).

    Google Scholar 

  3. K. Masu, Y. Nakamura, T. Yamazaki, T. Shibata, M. Takahashi, and K. Tsubouchi, Jpn. J. Appl. Phys. 34 (6B), 760 (1995).

    Article  ADS  Google Scholar 

  4. K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, and S. Minagawa, J. Appl. Phys. 79, 3487 (1996).

    Article  ADS  Google Scholar 

  5. Ch. Heinlein, J. Grepstad, T. Berge, and H. Riechert, Appl. Phys. Lett. 71, 341 (1997).

    Article  ADS  Google Scholar 

  6. A. Georgakilas, S. Mikroulis, V. Cimalla, M. Zervos, A. Kostopoulos, Ph. Komninou, Th. Kehagias, and Th. Karakostas, Phys. Status Solidi A 188, 567 (2001).

    Article  ADS  Google Scholar 

  7. F. Dwikusuma and T. F. Kuech, J. Appl. Phys. 94, 5656 (2003).

    Article  ADS  Google Scholar 

  8. B. Agnarsson, M. Göthelid, S. Olafsson, H. P. Gislason, and U. O. Karlsson, J. Appl. Phys. 101, 013519 (2007).

    Article  ADS  Google Scholar 

  9. N. Grandjean, J. Massies, and M. Leroux, J. Appl. Phys. 69, 2071 (1996).

    Google Scholar 

  10. M. Yeadon, M. T. Marshall, F. Hamdani, S. Pekin, H. Morkoc, and J. Murray Gibson, J. Appl. Phys. 83, 2847 (1998).

    Article  ADS  Google Scholar 

  11. T. Malin, V. Mansurov, Y. Galitsyn, and K. Zhuravlev, Phys. Status Solidi C 11, 613 (2014).

    Article  ADS  Google Scholar 

  12. T. Malin, V. Mansurov, Y. Galitsyn, and K. Zhuravlev, Phys. Status Solidi C 12, 443 (2015).

    Article  ADS  Google Scholar 

  13. Y. Wu, A. Hanlon, J. F. Kaeding, R. Sharma, P. T. Fini, S. Nakamura, and J. S. Speck, Appl. Phys. Lett. 84, 912 (2004).

    Article  ADS  Google Scholar 

  14. W.-G. Hu, Ch.-M. Jiao, H.-Y. Wei, P.-F. Zhang, T. T. Kang, R.-Q. Zhang, and X.-L. Liu, Chin. Phys. Lett. 25, 4364 (2008).

    Article  ADS  Google Scholar 

  15. K. S. Kim, K. Y. Lim, and H. J. Lee, Semicond. Sci. Technol. 14, 557 (1999).

    Article  ADS  Google Scholar 

  16. L.-C. Le, D.-G. Zhao, L.-L. Wu, Y. Deng, D.-S. Jiang, J.-J. Zhu, Z.-S. Liu, H. Wang, S.-M. Zhang, B.-S. Zhang, and H. Yang, Chin. Phys. B 20, 127306 (2011).

    Article  ADS  Google Scholar 

  17. W. Kim, M. Yeadon, A. E. Botchkarev, S. N. Mohammad, J. M. Gibson, and H. Morkoc, J. Vac. Sci. Technol. B 15, 921 (1997).

    Article  Google Scholar 

  18. C. L. Freeman, F. Claeyssens, and N. L. Allan, Phys. Rev. Lett. 96, 066102 (2006).

    Article  ADS  Google Scholar 

  19. C. J. F. Solano, A. Costales, E. Francisco, A. M. Pendas, M. A. Blanco, K.-C. Lau, H. He, and R. Pandey, J. Phys. Chem. C 112, 6667 (2008).

    Google Scholar 

  20. A. Yoshikawa and K. Takahashi, Phys. Status Solidi A 188, 625 (2001).

    Article  ADS  Google Scholar 

  21. F. Liu, R. Collazo, S. Mita, Z. Sitar, G. Duscher, and S. J. Pennycook, J. Appl. Phys. Lett. 91, 203115 (2007).

    Article  ADS  Google Scholar 

  22. J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, and A. Ishii, Appl. Phys. Lett. 83, 3075 (2003).

    Article  ADS  Google Scholar 

  23. S. K. Davidsson, J. F. Falth, X. Y. Liu, H. Zirath, and T. G. Andersson, J. Appl. Phys. 98, 016109 (2005).

    Article  ADS  Google Scholar 

  24. K. Xu, N. Yano, A. W. Jia, A. Yoshikawa, and K. Takahashi, J. Cryst. Growth 237–239, 1003 (2002).

    Article  Google Scholar 

  25. Y. S. Park, H. S. Lee, J. H. Na, H. J. Kim, S. M. Si, H. M. Kim, and J. E. Oh, J. Appl. Phys. 94, 800 (2003).

    Article  ADS  Google Scholar 

  26. D. H. Lim, K. Xu, S. Arima, A. Yoshikawa, and K. Takahashi, J. Appl. Phys. 91, 6461 (2002).

    Article  ADS  Google Scholar 

  27. Y. Wang, A. S. Ozcan, G. Ozaydin, K. F. Ludwig, Jr., A. Bhattacharyya, Th. D. Moustakas, H. Zhou, R. L. Headrick, and D. P. Siddons, Phys. Rev. B 74, 235304 (2006).

    Article  ADS  Google Scholar 

  28. J. V. Lauritsen, M. C. R. Jensen, K. Venkataramani, B. Hinnemann, S. Helveg, B. S. Clausen, and F. Besenbacher, Phys. Rev. Lett. 103, 076103 (2009).

    Article  ADS  Google Scholar 

  29. A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, and J. E. Nortrhrup, Phys. Rev. Lett. 79, 3934 (1997).

    Article  ADS  Google Scholar 

  30. A. R. Smith, R. M. Feenstra, D. W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J. E. Nortrhrup, Surf. Sci. 423, 70 (1999).

    Article  ADS  Google Scholar 

  31. N. Kumagai, K. Akiyama, R. Togashi, H. Murakami, M. Takeuchi, T. Kinoshita, K. Takada, Y. Aoyagi, and A. Koukitu, J. Cryst. Growth 305, 366 (2007).

    Article  ADS  Google Scholar 

  32. O. Ambacher, J. Phys. D 31, 2653 (1998).

    Article  ADS  Google Scholar 

  33. C. G. Dunn and E. F. Koch, Acta Metall. 5, 548 (1957).

    Article  Google Scholar 

  34. L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, Phys. Status Solidi B 198, 621 (1996).

    Article  ADS  Google Scholar 

  35. G. G. Stoney, Proc. R. Soc. London 82 (553), 172 (1909).

    Article  ADS  Google Scholar 

  36. T. Prokofyeva, M. Seon, J. Vanbuskirk, and M. Holtz, Phys. Rev. B 63, 125313 (2001).

    Article  ADS  Google Scholar 

  37. R. W. Hoffman, Thin Solid Films 34, 185 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Malin.

Additional information

Original Russian Text © T.V. Malin, D.S. Milakhin, V.G. Mansurov, Yu.G. Galitsyn, A.S. Kozhuhov, V.V. Ratnikov, A.N. Smirnov, V.Yu. Davydov, K.S. Zhuravlev, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 6, pp. 643–650.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malin, T.V., Milakhin, D.S., Mansurov, V.G. et al. Effect of the Sapphire-Nitridation Level and Nucleation-Layer Enrichment with Aluminum on the Structural Properties of AlN Layers. Semiconductors 52, 789–796 (2018). https://doi.org/10.1134/S1063782618060143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618060143

Navigation