Skip to main content
Log in

Quantum Oscillations of Photoconductivity Relaxation in pin GaAs/InAs/AlAs Heterodiodes

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The photoconductivity and its relaxation characteristics in tunneling pin GaAs/AlAs heterostructures under pulsed illumination is studied. Quantum oscillations in the photoconductivity are detected depending on the bias voltage with the period independent of the light wavelength, as well as an oscillating component of the relaxation curves caused by modulation of the recombination rate at the edge of a triangular quantum well in the undoped i layer, as in the case of photoconductivity oscillations. The common nature of oscillations of the steady-state photoconductivity and relaxation curves under pulsed illumination is directly confirmed by the lack of an oscillating component in both types of dependences of some studied p–i–n heterostructures. Simultaneous suppression of the observed oscillations of dependences of both types as the temperature increases to 80 K also confirms the proposed mechanism of their formation. The dependences of these oscillations on the magnetic field and light flux power are studied. Oscillation-amplitude suppression in a magnetic field of ~2 T perpendicular to the current is caused by the effect of the Lorentz force on the ballistic motion of carriers in the triangular-quantum-well region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynal, P. Atkinson, I. Farrer, and D. A. Ritchie, Phys. Rev. Lett. 94, 067401 (2005).

    Article  ADS  Google Scholar 

  2. O. Makarovsky, E. E. Vdovin, A. Patané, L. Eaves, M. N. Makhonin, A. I. Tartakovskii, and M. Hopkinson, Phys. Rev. Lett. 108, 117402 (2012).

    Article  ADS  Google Scholar 

  3. Q. C. Weng, Z. H. An, D. Y. Xiong, B. Zhang, P. P. Chen, T. X. Li, Z. O. Zhu, and W. Lu, Appl. Phys. Lett. 105, 031114 (2014).

    Article  ADS  Google Scholar 

  4. Wangping Wang, Ying Hou, Dayuan Xoing, Ning Li, Wei Lu, Wenxing Wang, Hong Chen, Junming Zhou, and E. Wu, and Heping Zengless, Appl. Phys. Lett. 92, 023508 (2008).

    Article  ADS  Google Scholar 

  5. T. W. Hickmott, P. M. Solomon, F. F. Fang, F. Stern, R. Fischer, and H. Morkoç, Phys. Rev. Lett. 52, 2053 (1984).

    Article  ADS  Google Scholar 

  6. M. Alikacem, D. K. Maude, L. Eaves, M. Henini, G. Hill, and M. A. Pate, Appl. Phys. Lett. 59, 3124 (1991).

    Article  ADS  Google Scholar 

  7. M. L. Leadbeater, E. S. Alves, L. Eaves, M. Henini, O. H. Hughes, A. Celeste, J. C. Portal, G. Hill, and M. A. Pate, J. Phys.: Condens. Matter 1, 4865 (1989).

    ADS  Google Scholar 

  8. T. M. Fromhold, L. Eaves, F. W. Sheard, M. L. Leadbeater, T. J. Foster, and P. C. Main, Phys. Rev. Lett. 72, 2608 (1994).

    Article  ADS  Google Scholar 

  9. V. L. Al’perovich, N. T. Moshegov, B. A. Tkachenko, O. A. Tkachenko, A. I. Toropov, and A. C. Yaroshevich, JETP Lett. 70, 117 (1999).

    Article  ADS  Google Scholar 

  10. Yu. N. Khanin, E. E. Vdovin, O. Makarovskii, and M. Khenini, JETP Lett. 102, 720 (2015).

    Article  ADS  Google Scholar 

  11. J. Gowar, Optical Communication Systems (Prentice Hall, NJ, 1984).

    Google Scholar 

  12. V. V. Vainberg, V. M. Vasetskii, Yu. N. Gudenko, V. N. Poroshin, N. V. Baidus, and B. N. Zvonkov, Semiconductors 46, 174 (2012)

    Google Scholar 

  13. S. V. Morozov, M. S. Joludev, A. V. Antonov, V. V. Rumyantsev, V. I. Gavrilenko, V. Ya. Aleshkin, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, O. Drachenko, S. Winnerl, H. Schneider, and M. Helm, Semiconductors 46, 1362 (2012).

    Article  ADS  Google Scholar 

  14. S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, and M. Helm, Phys. Rev. Lett. 107, 237401 (2011).

    Article  ADS  Google Scholar 

  15. E. E. Vdovin, M. Ashdown, A. Patane, L. Eaves, R. P. Campion, Yu. N. Khanin, M. Henini, and O. Makarovsky, Phys. Rev. B 89, 205305 (2014).

    Article  ADS  Google Scholar 

  16. G. Kieβlich, A. Wacker, E. Schöll, S. A. Vitusevich, A. E. Belyaev, S. V, Danylyuk, A. Förster, N. Klein, and M. Henini, Phys. Rev. B 68, 125331 (2003).

    Article  ADS  Google Scholar 

  17. A. E. Belyaev, A. Patane, L. Eaves, P. C. Main, M. Henini, and S. V. Danylyuk, Nanotechnology 12, 515 (2001).

    Article  ADS  Google Scholar 

  18. A. E. Belyaev, S. A. Vitusevich, L. Eaves, P. C. Main, M. Henini, A. Forster, W. Reetz, and S. V. Danylyuk, Nanotechnology 13, 94 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Vdovin.

Additional information

Original Russian Text © Yu.N. Khanin, E.E. Vdovin, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 6, pp. 591–596.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanin, Y.N., Vdovin, E.E. Quantum Oscillations of Photoconductivity Relaxation in pin GaAs/InAs/AlAs Heterodiodes. Semiconductors 52, 739–744 (2018). https://doi.org/10.1134/S1063782618060088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618060088

Navigation