Skip to main content
Log in

Variation in the Conductivity of Polyaniline Nanotubes During Their Formation

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

It is shown that the method for the growth of conducting polyaniline nanotubes, based on the direct polymerization of aniline on the surface of channels in track membranes, can be used to produce nanotubes with a given conductivity. An island-type film with a channel resistance of ~1019 Ω is formed during the initial stage of polymerization (up to 2 min). As the polymerization duration increases to 3 min, the channel resistance falls by more than 10 orders of magnitude. This is attributed to the formation of a continuous film on the channel surface, i.e., a nanotube is formed. With the polymerization duration increasing further, the channel (nanotube) resistance gradually decreases to ~1019 Ω at 10 min. The conductivity of polyaniline during the formation of a hollow nanotube is estimated to be 0.01–0.04 S/cm. If the nanotube is completely filled with polyaniline, the conductivity increases to ~0.2 S/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Aleshin, Adv. Mater. 18, 17 (2006).

    Article  Google Scholar 

  2. J. Huang, Pure Appl. Chem. 78, 15 (2006).

    Article  Google Scholar 

  3. S. R. Sivakkumar, W. J. Kim, J. A. Choi, D. R. Mac Farlane, M. Forsyth, and D. W. Kim, J. Power Sources 171, 1062 (2007).

    Article  ADS  Google Scholar 

  4. A. Z. Sadek, W. Wlodarski, K. Kalantar-Zadeh, C. Baker, and R. B. Kaner, Sens. Actuators, A 139, 53 (2007).

    Article  Google Scholar 

  5. M. Y. Chang, C. S. Wu, Y. F. Chen, B. Z. Hsieh, W. Y. Huang, K. S. Ho, and Y. K. Han, Org. Electron. 9, 1136 (2008).

    Article  Google Scholar 

  6. C. O. Baker, Xinwei Huang, W. Nelson, and R. B. Kaner, Chem. Soc. Rev. 46, 1510 (2017).

    Article  Google Scholar 

  7. M. Delvaux, J. Duchet, P. Y. Stavaux, R. Legras, and S. Demoustier-Champagne, Synt. Met. 113, 275 (2000).

    Article  Google Scholar 

  8. J. Stejskal, I. Sapurina, J. Prokeš, and J. Zemek, Synt. Met. 105, 195 (1999).

    Article  Google Scholar 

  9. I. Sapurina, A. Riede, and J. Stejskal, Synt. Met. 123, 503 (2001).

    Article  Google Scholar 

  10. M. A. Shishov, V. A. Moshnikov, and I. Yu. Sapurina, Russ. J. Appl. Chem. 86, 51 (2013).

    Article  Google Scholar 

  11. I. Yu. Sapurina, Extended Abstract of Doctoral Dissertation (Inst. Macromol. Compds. RAS, St. Petersburg, 2015).

    Google Scholar 

  12. M. Schnippering, H. V. Powell, S. R. Mackenzie, and P. R. Unwin, J. Phys. Chem. C 113, 20221 (2009).

    Article  Google Scholar 

  13. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984), Chap. 5.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Sudar’.

Additional information

Original Russian Text © V.M. Kapralova, I.Yu. Sapurina, N.T. Sudar’, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 6, pp. 671–674.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapralova, V.M., Sapurina, I.Y. & Sudar’, N.T. Variation in the Conductivity of Polyaniline Nanotubes During Their Formation. Semiconductors 52, 816–819 (2018). https://doi.org/10.1134/S1063782618060076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618060076

Navigation