, Volume 52, Issue 6, pp 816–819 | Cite as

Variation in the Conductivity of Polyaniline Nanotubes During Their Formation

  • V. M. Kapralova
  • I. Yu. Sapurina
  • N. T. Sudar’
Fabrication, Treatment, and Testing of Materials and Structures


It is shown that the method for the growth of conducting polyaniline nanotubes, based on the direct polymerization of aniline on the surface of channels in track membranes, can be used to produce nanotubes with a given conductivity. An island-type film with a channel resistance of ~1019 Ω is formed during the initial stage of polymerization (up to 2 min). As the polymerization duration increases to 3 min, the channel resistance falls by more than 10 orders of magnitude. This is attributed to the formation of a continuous film on the channel surface, i.e., a nanotube is formed. With the polymerization duration increasing further, the channel (nanotube) resistance gradually decreases to ~1019 Ω at 10 min. The conductivity of polyaniline during the formation of a hollow nanotube is estimated to be 0.01–0.04 S/cm. If the nanotube is completely filled with polyaniline, the conductivity increases to ~0.2 S/cm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Aleshin, Adv. Mater. 18, 17 (2006).CrossRefGoogle Scholar
  2. 2.
    J. Huang, Pure Appl. Chem. 78, 15 (2006).CrossRefGoogle Scholar
  3. 3.
    S. R. Sivakkumar, W. J. Kim, J. A. Choi, D. R. Mac Farlane, M. Forsyth, and D. W. Kim, J. Power Sources 171, 1062 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. Z. Sadek, W. Wlodarski, K. Kalantar-Zadeh, C. Baker, and R. B. Kaner, Sens. Actuators, A 139, 53 (2007).CrossRefGoogle Scholar
  5. 5.
    M. Y. Chang, C. S. Wu, Y. F. Chen, B. Z. Hsieh, W. Y. Huang, K. S. Ho, and Y. K. Han, Org. Electron. 9, 1136 (2008).CrossRefGoogle Scholar
  6. 6.
    C. O. Baker, Xinwei Huang, W. Nelson, and R. B. Kaner, Chem. Soc. Rev. 46, 1510 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Delvaux, J. Duchet, P. Y. Stavaux, R. Legras, and S. Demoustier-Champagne, Synt. Met. 113, 275 (2000).CrossRefGoogle Scholar
  8. 8.
    J. Stejskal, I. Sapurina, J. Prokeš, and J. Zemek, Synt. Met. 105, 195 (1999).CrossRefGoogle Scholar
  9. 9.
    I. Sapurina, A. Riede, and J. Stejskal, Synt. Met. 123, 503 (2001).CrossRefGoogle Scholar
  10. 10.
    M. A. Shishov, V. A. Moshnikov, and I. Yu. Sapurina, Russ. J. Appl. Chem. 86, 51 (2013).CrossRefGoogle Scholar
  11. 11.
    I. Yu. Sapurina, Extended Abstract of Doctoral Dissertation (Inst. Macromol. Compds. RAS, St. Petersburg, 2015).Google Scholar
  12. 12.
    M. Schnippering, H. V. Powell, S. R. Mackenzie, and P. R. Unwin, J. Phys. Chem. C 113, 20221 (2009).CrossRefGoogle Scholar
  13. 13.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984), Chap. 5.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Kapralova
    • 1
  • I. Yu. Sapurina
    • 2
  • N. T. Sudar’
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations