Advertisement

Semiconductors

, Volume 52, Issue 6, pp 723–728 | Cite as

Optical Properties of Multilayered Sol–Gel Zinc-Oxide Films

  • N. M. Denisov
  • E. B. Chubenko
  • V. P. Bondarenko
  • V. E. Borisenko
Surfaces, Interfaces, and Thin Films
  • 27 Downloads

Abstract

Study of structural, optical and photocatalytic properties of multilayered (1–8 layers) zinc oxide films deposited on glass substrates by sol-gel method showed, that after thermal treatment at 500°C they consist of random oriented hexagonal crystalline grains with size of 34–40 nm, forming larger particles with sizes of 100–150 nm, which do not depend on number of layers. With an increase in the number of layers, the intensity of exciton photoluminescence decreases by a factor of 10, the absorption of light in the visible and near IR ranges increases, and the efficiency of photocatalytic decomposition of the test organic dye rhodamine B increases by 10–12%. The observed changes are related to the increase in the total area of grain boundaries and to the change in the integral amount of oxygen vacancies and interstitial atoms as the number of layers increases, which makes it possible to control the properties of zinc oxide films for applications in optoelectronics, photovoltaics and photocatalysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoç, Appl. Phys. Rev. 98, 041301 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    A. Kolodziejczak-Radzimska and T. Jesionowski, Materials 7, 2833 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    A. Pimentel, E. Fortunato, A. Gonçalves, A. Marques, H. Águas, L. Pereira, I. Ferreira, and R. Martins, Thin Solid Films 487, 212 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    Ü. Özgür, D. Hofstetter, and H. Morkoc, Proc. IEEE 98, 1255 (2010).CrossRefGoogle Scholar
  5. 5.
    A. B. Djurišic, X. Chen, Y. H. Leung, and A. M. C. Ng, J. Mater. Chem. 22, 6526 (2012).CrossRefGoogle Scholar
  6. 6.
    L. Znaidi, Mater. Sci. Eng. B 174, 18 (2010).CrossRefGoogle Scholar
  7. 7.
    Z. Fan and J. G. Lu, J. Nanosci. Nanotechnol. 5, 1 (2005).CrossRefGoogle Scholar
  8. 8.
    M. Balucani, P. Nenzi, E. Chubenko, A. Klyshko, and V. Bondarenko, J. Nanopart. Res. 13, 5985 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    N. Kaneva, A. Bojinova, K. Papazova, D. Dimitrov, I. Svinyarov, and M. Bogdanov, Bulg. Chem. Commun. 47, 395 (2015).Google Scholar
  10. 10.
    A. S. Bozhinova, N. V. Kaneva, I. E. Kononova, S. S. Nalimova, Sh. A. Syuleiman, K. I. Papazova, D. Ts. Dimitrov, V. A. Moshnikov, and E. I. Terukov, Semiconductors 47, 1636 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    H. Y. Bae and G. M. Choi, Sens. Actuators B 55, 47 (1999).CrossRefGoogle Scholar
  12. 12.
    T. Demes, C. Ternon, D. Riassetto, H. Roussel, L. Rapenne, I. Gélard, C. Jimenez, V. Stambouli, and M. Langlet, J. Phys. Chem. Solids 95, 43 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    M. I. Khan, K. A. Bhatti, R. Qindeel, N. Alonizan, and H. S. Althobaiti, Results Phys. 7, 651 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    N. M. Denisov, F. A. d’Avitaya, and V. E. Borisenko, Inorg. Mater. 50, 572 (2014).CrossRefGoogle Scholar
  15. 15.
    N. M. Denisov, A. V. Baglov, V. E. Borisenko, and E. V. Drozdova, Inorg. Mater. 52, 523 (2016).CrossRefGoogle Scholar
  16. 16.
    N. M. Denisov, A. V. Baglov, and V. E. Borisenko, Inorg. Mater. 53, 176 (2017).CrossRefGoogle Scholar
  17. 17.
    W. Shan, W. Walukiewicz, J. W. Ager III, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, Appl. Phys. Lett. 86, 191911 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    V. Srikant and D. R. Clarke, J. Appl. Phys. 82, 5447 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    S. Vempati, J. Mitra, and P. Dawson, Nanoscale Res. Lett. 7, 470 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    B. Cao, W. Cai, and H. Zeng, Appl. Phys. Lett. 88, 161101 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    C. H. Ahn, Y. Y. Kim, D. C. Kim, S. C. Mohanta, and H. K. Cho, J. Appl. Phys. 105, 013502 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    S. Chakrabarti, D. Ganguli, and S. Chaudhuri, Mater. Lett. 58, 3952 (2004).CrossRefGoogle Scholar
  23. 23.
    A. Janotti and C. G. van de Walle, Rep. Prog. Phys. 72, 126501 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, Water Res. 88, 428 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Denisov
    • 1
  • E. B. Chubenko
    • 1
  • V. P. Bondarenko
    • 1
  • V. E. Borisenko
    • 1
  1. 1.Belarusian State University of Informatics and RadioelectronicsMinskBelarus

Personalised recommendations