Skip to main content
Log in

Optical Properties of Multilayered Sol–Gel Zinc-Oxide Films

Semiconductors Aims and scope Submit manuscript

Abstract

Study of structural, optical and photocatalytic properties of multilayered (1–8 layers) zinc oxide films deposited on glass substrates by sol-gel method showed, that after thermal treatment at 500°C they consist of random oriented hexagonal crystalline grains with size of 34–40 nm, forming larger particles with sizes of 100–150 nm, which do not depend on number of layers. With an increase in the number of layers, the intensity of exciton photoluminescence decreases by a factor of 10, the absorption of light in the visible and near IR ranges increases, and the efficiency of photocatalytic decomposition of the test organic dye rhodamine B increases by 10–12%. The observed changes are related to the increase in the total area of grain boundaries and to the change in the integral amount of oxygen vacancies and interstitial atoms as the number of layers increases, which makes it possible to control the properties of zinc oxide films for applications in optoelectronics, photovoltaics and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoç, Appl. Phys. Rev. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  2. A. Kolodziejczak-Radzimska and T. Jesionowski, Materials 7, 2833 (2014).

    Article  ADS  Google Scholar 

  3. A. Pimentel, E. Fortunato, A. Gonçalves, A. Marques, H. Águas, L. Pereira, I. Ferreira, and R. Martins, Thin Solid Films 487, 212 (2005).

    Article  ADS  Google Scholar 

  4. Ü. Özgür, D. Hofstetter, and H. Morkoc, Proc. IEEE 98, 1255 (2010).

    Article  Google Scholar 

  5. A. B. Djurišic, X. Chen, Y. H. Leung, and A. M. C. Ng, J. Mater. Chem. 22, 6526 (2012).

    Article  Google Scholar 

  6. L. Znaidi, Mater. Sci. Eng. B 174, 18 (2010).

    Article  Google Scholar 

  7. Z. Fan and J. G. Lu, J. Nanosci. Nanotechnol. 5, 1 (2005).

    Article  Google Scholar 

  8. M. Balucani, P. Nenzi, E. Chubenko, A. Klyshko, and V. Bondarenko, J. Nanopart. Res. 13, 5985 (2011).

    Article  ADS  Google Scholar 

  9. N. Kaneva, A. Bojinova, K. Papazova, D. Dimitrov, I. Svinyarov, and M. Bogdanov, Bulg. Chem. Commun. 47, 395 (2015).

    Google Scholar 

  10. A. S. Bozhinova, N. V. Kaneva, I. E. Kononova, S. S. Nalimova, Sh. A. Syuleiman, K. I. Papazova, D. Ts. Dimitrov, V. A. Moshnikov, and E. I. Terukov, Semiconductors 47, 1636 (2013).

    Article  ADS  Google Scholar 

  11. H. Y. Bae and G. M. Choi, Sens. Actuators B 55, 47 (1999).

    Article  Google Scholar 

  12. T. Demes, C. Ternon, D. Riassetto, H. Roussel, L. Rapenne, I. Gélard, C. Jimenez, V. Stambouli, and M. Langlet, J. Phys. Chem. Solids 95, 43 (2016).

    Article  ADS  Google Scholar 

  13. M. I. Khan, K. A. Bhatti, R. Qindeel, N. Alonizan, and H. S. Althobaiti, Results Phys. 7, 651 (2017).

    Article  ADS  Google Scholar 

  14. N. M. Denisov, F. A. d’Avitaya, and V. E. Borisenko, Inorg. Mater. 50, 572 (2014).

    Article  Google Scholar 

  15. N. M. Denisov, A. V. Baglov, V. E. Borisenko, and E. V. Drozdova, Inorg. Mater. 52, 523 (2016).

    Article  Google Scholar 

  16. N. M. Denisov, A. V. Baglov, and V. E. Borisenko, Inorg. Mater. 53, 176 (2017).

    Article  Google Scholar 

  17. W. Shan, W. Walukiewicz, J. W. Ager III, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, Appl. Phys. Lett. 86, 191911 (2005).

    Article  ADS  Google Scholar 

  18. V. Srikant and D. R. Clarke, J. Appl. Phys. 82, 5447 (1998).

    Article  ADS  Google Scholar 

  19. S. Vempati, J. Mitra, and P. Dawson, Nanoscale Res. Lett. 7, 470 (2012).

    Article  ADS  Google Scholar 

  20. B. Cao, W. Cai, and H. Zeng, Appl. Phys. Lett. 88, 161101 (2006).

    Article  ADS  Google Scholar 

  21. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. C. Mohanta, and H. K. Cho, J. Appl. Phys. 105, 013502 (2009).

    Article  ADS  Google Scholar 

  22. S. Chakrabarti, D. Ganguli, and S. Chaudhuri, Mater. Lett. 58, 3952 (2004).

    Article  Google Scholar 

  23. A. Janotti and C. G. van de Walle, Rep. Prog. Phys. 72, 126501 (2009).

    Article  ADS  Google Scholar 

  24. K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, Water Res. 88, 428 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Chubenko.

Additional information

Original Russian Text © N.M. Denisov, E.B. Chubenko, V.P. Bondarenko, V.E. Borisenko, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 6, pp. 575–580.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, N.M., Chubenko, E.B., Bondarenko, V.P. et al. Optical Properties of Multilayered Sol–Gel Zinc-Oxide Films. Semiconductors 52, 723–728 (2018). https://doi.org/10.1134/S1063782618060040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618060040

Navigation