Skip to main content
Log in

Heterostructures of Single-Wavelength and Dual-Wavelength Quantum-Cascade Lasers

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of development of the basic structure and technological conditions of growing heterostructures for single- and dual-frequency quantum-cascade lasers are reported. The heterostructure for a dual-frequency quantum-cascade laser includes cascades emitting at wavelengths of 9.6 and 7.6 μm. On the basis of the suggested heterostructure, it is possible to develop a quantum-cascade laser operating at a difference frequency of 8 THz. The heterostructures for the quantum-cascade laser are grown using molecularbeam epitaxy. The methods of X-ray diffraction and emission electron microscopy are used to study the structural properties of the fabricated heterostructures. Good agreement between the specified and realized thicknesses of the epitaxial layers and a high uniformity of the chemical composition and thicknesses of the epitaxial layers over the area of the heterostructure is demonstrated. A stripe-structured quantum-cascade laser is fabricated; its generation at a wavelength of 9.6 μm is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).

    Article  ADS  Google Scholar 

  2. M. Tonouchi, Nat. Photon. 1, 97 (2007).

    Article  ADS  Google Scholar 

  3. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Electron. Lett. 42, 89 (2006).

    Article  Google Scholar 

  4. L. H. Li, L. Chen, J. R. Freeman, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, Electron. Lett. 53, 799 (2017).

    Article  Google Scholar 

  5. M. Wienold, B. Röben, L. Schrottke, R. Sharma, A. Tahraoui, K. Biermann, and H. T. Grahn, Opt. Express 22, 3334 (2014).

    Article  ADS  Google Scholar 

  6. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, Opt. Express 20, 3866 (2012).

    Article  ADS  Google Scholar 

  7. Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, Sci. Rep. 6, 23595 (2016).

    Article  ADS  Google Scholar 

  8. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express 23, 8462 (2015).

    Article  ADS  Google Scholar 

  9. G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, Nat. Commun. 3, 952 (2012).

    Article  ADS  Google Scholar 

  10. H. Zhu, F. Wang, Q. Yan, C. Yu, J. Chen, G. Xu, L. He, L. Li, L. Chen, A. Giles Davies, E. H. Linfield, J. Hao, P.-B. Vigneron, and R. Colombelli, Appl. Phys. Lett. 109, 231105 (2016).

    Article  ADS  Google Scholar 

  11. M. Brandstetter, C. Deutsch, M. Krall, H. Detz, D. C. MacFarland, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 103, 171113 (2013).

    Article  ADS  Google Scholar 

  12. E. Kapon and A. Sirbu, Nat. Photon. 3, 27 (2009).

    Article  ADS  Google Scholar 

  13. E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, R. G. Baets, G. Roelkens, and A. Larsson, IEEE Photon. Technol. Lett. 28, 856 (2016).

    Article  ADS  Google Scholar 

  14. A. V. Babichev, L. Y. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Turkiewicz, M. Agustin, N. N. Ledentsov, K. O. Voropaev, A. S. Ionov, and A. Y. Egorov, Proc. SPIE 10122, 1012208–1 (2017).

    Article  Google Scholar 

  15. A. V. Babichev, L. Ya. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Turkiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin, N. N. Ledentsov, and A. Yu. Egorov, IEEEJ. Quantum Electron. 53 (6), 1 (2017).

    Article  Google Scholar 

  16. S. Jung, J. H. Kima, Y. Jianga, K. Vijayraghavanb, and M. A. Belkin, Proc. SPIE 10123, 1012316–1 (2017).

    Google Scholar 

  17. Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, Sci. Rep. 6 (1) (2016).

    Google Scholar 

  18. Q. Lu and M. Razeghi, Photonics 3 (3), 42 (2016).

    Article  Google Scholar 

  19. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, Appl. Phys. Lett. 92, 201101 (2008).

    Article  ADS  Google Scholar 

  20. K. Vijayraghavan, M. Jang, A. Jiang, X. Wang, M. Troccoli, and M. A. Belkin, IEEE Photon. Technol. Lett. 26, 391 (2014).

    Article  ADS  Google Scholar 

  21. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett. 99, 131106 (2011).

    Article  ADS  Google Scholar 

  22. K. Fujita, M. Hitaka, A. Ito, T. Edamura, M. Yamanishi, S. Jung, and M. A. Belkin, Appl. Phys. Lett. 106, 251104 (2015).

    Article  ADS  Google Scholar 

  23. A. V. Babichev, A. G. Gladyshev, A. V. Filimonov, V. N. Nevedomskii, A. S. Kurochkin, E. S. Kolodeznyi, G. S. Sokolovskii, V. E. Bugrov, L. Ya. Karachinsky, I. I. Novikov, A. Bousseksou, and A. Yu. Egorov, Tech. Phys. Lett. 43, 666 (2017).

    Article  ADS  Google Scholar 

  24. Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, Appl. Phys. Lett. 94, 011103 (2009).

    Article  ADS  Google Scholar 

  25. A. S. Kurochkin, I. I. Novikov, L. Ya. Karachinsky, D. V. Denisov, A. G. Gladyshev, G. A. Gusev, A. N. Sofronov, A. A. Usikova, Yu. M. Zadiranov, G. S. Sokolovsky, V. M. Ustinov, and A. Yu. Egorov, J. Phys.: Conf. Ser. 917 052016 (2017).

    Google Scholar 

  26. G. A. Gusev, A. N. Sofronov, D. A. Firsov, L. E. Vorobjev, A. V. Babichev, A. A. Usikova, N. D. Il’inskaya, Yu. M. Zadiranov, V. N. Nevedomsky, G. S. Sokolovskii, V. M. Ustinov, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, and A. Yu. Egorov, J. Phys.: Conf. Ser. 917 052019 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Egorov.

Additional information

Original Russian Text © A.V. Babichev, A.S. Kurochkin, E.C. Kolodeznyi, A.V. Filimonov, A.A. Usikova, V.N. Nevedomsky, A.G. Gladyshev, L.Ya. Karachinsky, I.I. Novikov, A.Yu. Egorov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 6, pp. 597–602.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babichev, A.V., Kurochkin, A.S., Kolodeznyi, E.C. et al. Heterostructures of Single-Wavelength and Dual-Wavelength Quantum-Cascade Lasers. Semiconductors 52, 745–749 (2018). https://doi.org/10.1134/S1063782618060039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618060039

Navigation