Skip to main content
Log in

Model for Charge Accumulation in n- and p-MOS Transistors during Tunneling Electron Injection from a Gate

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A quantitative model for charge accumulation in an undergate dielectric during tunneling electron injection from a gate according to the Fowler–Nordheim mechanism is developed. The model takes into account electron and hole capture at hydrogen-free and hydrogen-related traps as well as the generation of surface states during the interaction of holes with hydrogen-related centers. The experimental dependences of the threshold voltage shift and gate voltage shift of n- and p-channel MOS (metal–oxide–semiconductor) transistors on the injected charge in the constant current mode are analyzed based on the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Baraban, V. V. Bulavinov, and P. P. Konorov, Electronics of SiO2 Layers on Silicon (Leningr. Gos. Univ., Leningrad, 1988) [in Russian].

    Google Scholar 

  2. O. V. Aleksandrov, Semiconductors 51, 1062 (2017).

    Article  ADS  Google Scholar 

  3. F. J. Feigl, D. R. Young, D. J. DiMaria, S. Lai, and J. Calise, J. Appl. Phys. 52, 5665 (1981).

    Article  ADS  Google Scholar 

  4. A. M. Emel’yanov, Phys. Solid State 52, 1131 (2010).

    Article  ADS  Google Scholar 

  5. Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky, J. Appl. Phys. 54, 5793 (1983).

    Article  ADS  Google Scholar 

  6. N. Klein and P. Solomon, J. Appl. Phys. 47, 4364 (1976).

    Article  ADS  Google Scholar 

  7. Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky, J. Appl. Phys. 58, 2252 (1985).

    Article  ADS  Google Scholar 

  8. C.-F. Chen and C.-Y. Wu, J. Appl. Phys. 60, 3926 (1986).

    Article  ADS  Google Scholar 

  9. P. Fazan, M. Dutoit, C. Martin, and M. Ilegems, Solid State Electron. 30, 829 (1987).

    Article  ADS  Google Scholar 

  10. P. Samanta and C. K. Sarkar, J. Appl. Phys. 83, 2662 (1998).

    Article  ADS  Google Scholar 

  11. M. Knoll, D. Bräunig, and W. R. Fahrner, J. Appl. Phys. 53, 6946 (1982).

    Article  ADS  Google Scholar 

  12. V. V. Andreev, V. G. Baryshev, G. G. Bondarenko, A. A. Stolyarov, and V. A. Shakhnov, Mikroelektronika 26, 440 (1997).

    Google Scholar 

  13. V. V. Afanas’ev, G. J. Adriaenssens, and A. Stesmans, Microelectron. Eng. 59, 85 (2001).

    Article  Google Scholar 

  14. M. V. Fischetti, Phys. Rev. B 31, 2099 (1985).

    Article  ADS  Google Scholar 

  15. D. J. DiMaria, E. Cartier, and D. A. Buchanan, J. Appl. Phys. 80, 304 (1996).

    Article  ADS  Google Scholar 

  16. S. K. Lai, Appl. Phys. Lett. 39, 58 (1981).

    Article  ADS  Google Scholar 

  17. D. J. DiMaria, E. Cartier, and D. Arnold, J. Appl. Phys. 73, 3367 (1993).

    Article  ADS  Google Scholar 

  18. Q. D. M. Khosru, N. Yasuda, K. Taniguchi, and C. Hamaguchi, J. Appl. Phys. 77, 4494 (1995).

    Article  ADS  Google Scholar 

  19. G. V. Gadiyak, Semiconductors 31, 207 (1997).

    Article  ADS  Google Scholar 

  20. A. V. Schwerin, M. M. Heyns, and W. Weber, J. Appl. Phys. 67, 7595 (1990).

    Article  ADS  Google Scholar 

  21. D. A. Buchanan and D. J. DiMaria, J. Appl. Phys. 67, 7439 (1990).

    Article  ADS  Google Scholar 

  22. M. Lenzlinger and E. H. Snow, J. Appl. Phys. 40, 278 (1969).

    Article  ADS  Google Scholar 

  23. P. Samanta and C. K. Sarkar, Solid State Electron. 46, 279 (2002).

    Article  ADS  Google Scholar 

  24. O. V. Aleksandrov, Semiconductors 48, 505 (2014); 49, 793 (2015).

    Article  ADS  Google Scholar 

  25. E. Cartier, J. H. Stathis, and D. A. Buchanan, Appl. Phys. Lett. 63, 1510 (1993).

    Article  ADS  Google Scholar 

  26. X. Gao and S. S. Yee, IEEE Trans. Electron. Dev. 41, 1819 (1994).

    Article  ADS  Google Scholar 

  27. Q. D. M. Khosru, N. Yasuda, K. Taniguchi, and C. Hamaguchi, J. Appl. Phys. 76, 4738 (1994).

    Article  ADS  Google Scholar 

  28. L. Do Thanh, M. Aslam, and P. Balk, Solid State Electron. 29, 829 (1986).

    Article  ADS  Google Scholar 

  29. R. J. Krantz, L. W. Aukerman, and T. C. Zietlow, IEEE Trans. Nucl. Sci. 34, 1196 (1987).

    Article  ADS  Google Scholar 

  30. J. J. Tzou, J. Y.-C. Sun, and C.-T. Sah, Appl. Phys. Lett. 43, 861 (1983).

    Article  ADS  Google Scholar 

  31. H. E. Boesch, F. B. McLean, J. M. Benedetto, and J. M. McGarrity, IEEE Trans. Nucl. Sci. 33, 1191 (1986).

    Article  ADS  Google Scholar 

  32. I. P. Mikhailovskii, P. B. Potapov, and A. E. Epov, Phys. Status Solidi A 94, 679 (1986).

    Article  ADS  Google Scholar 

  33. V. S. Soldatov, N. V. Sobolev, I. B. Varlashov, V. A. Kolyada, and A. G. Voevodin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 82 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Aleksandrov.

Additional information

Original Russian Text © O.V. Aleksandrov, S.A. Mokrushina, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 6, pp. 637–642.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, O.V., Mokrushina, S.A. Model for Charge Accumulation in n- and p-MOS Transistors during Tunneling Electron Injection from a Gate. Semiconductors 52, 783–788 (2018). https://doi.org/10.1134/S1063782618060027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618060027

Navigation