Advertisement

Semiconductors

, Volume 52, Issue 5, pp 654–659 | Cite as

Effect of Epitaxial Alignment on Electron Transport from Quasi-Two-Dimensional Iron Silicide α-FeSi2 Nanocrystals Into p-Si(001)

  • I. A. Tarasov
  • M. V. Rautskii
  • I. A. Yakovlev
  • M. N. Volochaev
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Technology
  • 26 Downloads

Abstract

Self-assembled growth of α-FeSi2 nanocrystal ensembles on gold-activated and gold-free Si(001) surface by molecular beam epitaxy is reported. The microstructure and basic orientation relationship (OR) between the silicide nanocrystals and silicon substrate were analysed. The study reveals that utilisation of the gold as catalyst regulates the preferable OR of the nanocrystals with silicon and their habitus. It is shown that electron transport from α-FeSi2 phase into p-Si(001) can be tuned by the formation of (001)—or (111)—textured α-FeSi2 nanocrystals ensembles. A current-voltage characteristic of the structures with different preferable epitaxial alignment (α-FeSi2(001)/Si(100) and α-FeSi2(111)/Si(100)) shows good linearity at room temperature. However, it becomes non-linear at different temperatures for different ORs due to different Schottky barrier height governed by a particular epitaxial alignment of the α-FeSi2/p-Si interfaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Shine and K. C. Saraswat, IEEE Trans. Electron Dev. 64, 3768 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    R. Islam, G. Shine, and K. C. Saraswat, Appl. Phys. Lett. 105 (2014).Google Scholar
  3. 3.
    V. Heine, Phys. Rev. A 138, 1689 (1965).ADSCrossRefGoogle Scholar
  4. 4.
    A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta, K. Wang, J. Gelatos, S. E. Mohney, and S. Datta, Appl. Phys. Lett. 104, 8 (2014).CrossRefGoogle Scholar
  5. 5.
    I. A. Tarasov, M. A. Visotin, A. S. Aleksandrovsky, N.N. Kosyrev, I. A. Yakovlev, M. S. Molokeev, A.V. Lukyanenko, A. S. Krylov, A. S. Fedorov, S. N. Varnakov, and S. G. Ovchinnikov, J. Magn. Magn. Mater. 440, 144 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    I. A. Tarasov, I. A. Yakovlev, M. S. Molokeev, M.Rautskii, I. V. Nemtsev, S. N. Varnakov, and S. G. Ovchinnikov, Mater. Lett. 168, 90 (2016).CrossRefGoogle Scholar
  7. 7.
    B.-X. Xu, Y. Zhang, H.-S. Zhu, D.-Z. Shen, and J.-L. Wu, Mater. Lett. 59, 833 (2005).CrossRefGoogle Scholar
  8. 8.
    B. Aronsson, D. H. Templeton, S. Rundqvist, E. Varde, and G. Westin, Acta Chem. Scand. 14, 1414 (1960).CrossRefGoogle Scholar
  9. 9.
    W. Miiller, J. M. Tomczak, J. W. Simonson, G. Smith, G. Kotliar, and M. C. Aronson, J. Phys.: Condens. Matter 27, 175601 (2015).ADSGoogle Scholar
  10. 10.
    J. K. Tripathi, G. Markovich, and I. Goldfarb, Appl. Phys. Lett. 102, 251604 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    J. K. Tripathi, M. Garbrecht, W. D. Kaplan, G. Markovich, and I. Goldfarb, Nanotechnology 23, 495603 (2012).CrossRefGoogle Scholar
  12. 12.
    J. K. Tripathi, R. Levy, Y. Camus, M. Dascalu, F. Cesura, R. Chalasani, A. Kohn, G. Markovich, and I. Goldfarb, Appl. Surf. Sci. 391, 24 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    V. S. Zhandun, N. G. Zamkova, S. G. Ovchinnikov, and I. S. Sandalov, Phys. Rev. B 95, 54429 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    G. Cao, D. J. Singh, X.-G. Zhang, G. Samolyuk, L. Qiao, C. Parish, K. Jin, Y. Zhang, H. Guo, S. Tang, W. Wang, J. Yi, C. Cantoni, W. Siemons, E. A. Payzant, M. Biegalski, T. Z. Ward, D. Mandrus, G. M. Stocks, and Z. Gai, Phys. Rev. Lett. 114, 147202 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    N. Jedrecy, A. Waldhauer, M. Sauvage-Simkin, R. Pinchaux, and Y. Zheng, Phys. Rev. B 49, 4725 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    J. Chevrier, P. Stocker, L. T. Vinh, J. M. Gay, and J. Derrien, Europhys. Lett. 22, 449 (1993).ADSCrossRefGoogle Scholar
  17. 17.
    X. W. Lin, M. Behar, J. Desimoni, H. Bernas, J. Washburn, and Z. Liliental-Weber, Appl. Phys. Lett. 63, 105 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    S. S. Pan, C. Ye, X. M. Teng, H. T. Fan, and G. H. Li, Phys. Status Solidi 204, 3316 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    C. Detavernier, C. Lavoie, J. Jordan-Sweet, and A. S. Özcan, Phys. Rev. B 69, 174106 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Gao, G. Shao, R. S. Chen, Y. T. Chong, and Q. Li, Solid State Commun. 149, 97 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    Z.-Q. Zou, X. Li, X.-Y. Liu, K.-J. Shi, and X.-Q. Guo, Appl. Surf. Sci. 399, 200 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    S. Liang, R. Islam, D. J. Smith, and P. A. Bennett, J. Cryst. Growth 295, 166 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    D. Das, J. C. Mahato, B. Bisi, B. Satpati, and B. N. Dev, Appl. Phys. Lett. 105, 191606 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    V. E. Borisenko, Semiconducting Silicides: Basics, Formation, Properties (Springer, Berlin, Heidelberg, 2011).Google Scholar
  25. 25.
    J. Karel, J. Juraszek, J. Minar, C. Bordel, K. H. Stone, Y. N. Zhang, J. Hu, R. Q. Wu, H. Ebert, J. B. Kortright, and F. Hellman, Phys. Rev. B 91, 144402 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    M. N. Volochaev, I. A. Tarasov, Y. Y. Loginov, A. G. Cherkov, and I. V. Kovalev, J. Phys.: Conf. Ser. 857, 12053 (2017).Google Scholar
  27. 27.
    S. N. Varnakov, A. A. Lepeshev, S. G. Ovchinnikov, A. S. Parshin, M. M. Korshunov, and P. Nevoral, Instrum. Exp. Tech. 47, 839 (2004).CrossRefGoogle Scholar
  28. 28.
    I. A. Yakovlev, S. N. Varnakov, B. A. Belyaev, S. M. Zharkov, M. S. Molokeev, I. A. Tarasov, and S. G. Ovchinnikov, JETP Lett. 99, 527 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    N. V. Volkov, A. S. Tarasov, D. A. Smolyakov, A. O. Gustaitsev, M. V. Rautskii, A. V. Lukyanenko, M. N. Volochaev, S. N. Varnakov, I. A. Yakovlev, and S. G. Ovchinnikov, AIP Adv. 7, 15206 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    L. A. Solovyov, J. Appl. Crystallogr. 37, 743 (2004).CrossRefGoogle Scholar
  31. 31.
    S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, New York, 1969).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Tarasov
    • 1
  • M. V. Rautskii
    • 1
  • I. A. Yakovlev
    • 1
  • M. N. Volochaev
    • 1
  1. 1.Kirensky Institute of PhysicsFederal Research Centre KSC SB RASKrasnoyarskRussia

Personalised recommendations