The Impact of the Substrate Material on the Optical Properties of 2D WSe2 Monolayers
Abstract
2D-materials, especially transition metal dichalcogenides (TMDs) have drawn a lot of attention due to their remarkable characteristics rendering them a promising candidate for optical applications. While the basic properties are understood up to now, the influence of the environment has not been studied in detail, yet. Here we highlight a systematic comparison of the optical properties of tungsten diselenide monolayers on different substrates. Subtle changes in the emission spectrum and Raman signature have been found as well as surprisingly pronounced differences in the pump-power-dependent and time-resolved output at higher excitation densities. For all samples, exciton–exciton annihilation can be obtained. Nevertheless an analysis of different pump-dependent decay rates suggests substrate-dependent changes in the diffusion constant as well as exciton Bohr radius.
Preview
Unable to display preview. Download preview PDF.
References
- 1.K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). doi 10.1103/Phys-RevLett.105.136805ADSCrossRefGoogle Scholar
- 2.G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, arXiv:1707.05863 (2017).Google Scholar
- 3.L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Science (Washington, DC, U. S.) 340 (6138), 1311 (2013). doi 10.1126/science.1235547ADSCrossRefGoogle Scholar
- 4.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). doi 10.1038/nnano.2010.279ADSCrossRefGoogle Scholar
- 5.S. Das, M. Dubey, and A. Roelofs, Appl. Phys. Lett. 105, 083511 (2014). doi 10.1063/1.4894426ADSCrossRefGoogle Scholar
- 6.F. Withers, O. del Pozo-Zamudio, S. Schwarz, S. Dufferwiel, P. M. Walker, T. Godde, A. P. Rooney, A. Gholinia, C. R. Woods, P. Blake, S. J. Haigh, K. Watanabe, T. Taniguchi, I. L. Aleiner, A. K. Geim, V. I. Fal’ko, A. I. Tartakovskii, and K. S. Novoselov, Nano Lett. 15, 8223 (2015). doi 10.1021/acs.nanolett. 5b03740ADSCrossRefGoogle Scholar
- 7.H. Li, J. Wu, Z. Yin, and H. Zhang, Accounts Chem. Res. 47, 1067 (2014). doi 10.1021/ar4002312CrossRefGoogle Scholar
- 8.E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón, and F. Guinea, Phys. Rev. B 88, 075409 (2013). doi 10.1103/PhysRevB.88.075409ADSCrossRefGoogle Scholar
- 9.A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014). doi 10.1103/PhysRevLett.113.076802ADSCrossRefGoogle Scholar
- 10.Y. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, Nat. Phys. 11, 477 (2015). doi 10.1038/nphys3324CrossRefGoogle Scholar
- 11.M. Danovich, V. Zólyomi, and V. I. Fal’ko, Sci. Rep. 7, 45998 (2017). doi 10.1038/srep45998ADSCrossRefGoogle Scholar
- 12.K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, Nat. Commun. 8, 15552 (2017). doi 10.1038/ncomms15552ADSCrossRefGoogle Scholar
- 13.Y. Yu, Y. Yu, C. Xu, A. Barrette, K. Gundogdu, and L. Cao, Phys. Rev. B 93, 201111 (2016). doi 10.1103/PhysRevB.93.201111ADSCrossRefGoogle Scholar
- 14.L. Yuan and L. Huang, Nanoscale 7, 7402 (2015). doi 10.1039/C5NR00383KADSCrossRefGoogle Scholar
- 15.S. Lippert, L. M. Schneider, D. Renaud, K. N. Kang, O. Ajayi, J. Kuhnert, M. U. Halbich, O. M. Abdulmunem, X. Lin, K. Hassoon, S. Edalati-Boostan, Y. D. Kim, W. Heimbrodt, E. H. Yang, J. C. Hone, and A. Rahimi-Iman, 2D Mater. 4, 025045 (2017). doi 10.1088/2053-1583/aa5b21CrossRefGoogle Scholar
- 16.D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan, and T. F. Heinz, Nano Lett. 14, 5625 (2014). doi 10.1021/nl5021975ADSCrossRefGoogle Scholar
- 17.N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, Phys. Rev. B 89, 125427 (2014). doi 10.1103/PhysRevB.89.125427ADSCrossRefGoogle Scholar
- 18.A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and T. F. Heinz, Nat. Photon. 9, 466 (2015). doi 10.1038/nphoton.2015.104ADSCrossRefGoogle Scholar
- 19.A. F. Rigosi, H. M. Hill, Y. Li, A. Chernikov, and T. F. Heinz, Nano Lett. 15, 5033 (2015). doi 10.1021/acs.nanolett.5b01055ADSCrossRefGoogle Scholar
- 20.Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y. H. Lee, J. Kong, M. S. Dresselhaus, and T. Palacios, Nano Lett. 14, 5569 (2014). doi 10.1021/nl501988yADSCrossRefGoogle Scholar
- 21.Y. Yu, Y. Yu, C. Xu, Y. Q. Cai, L. Su, Y. W. Zhang, Y.W. Zhang, K. Gundogdu, and L. Cao, Adv. Funct. Mater. 26, 4733 (2016). doi 10.1002/adfm.201600418CrossRefGoogle Scholar
- 22.A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, Nano Lett. 16, 7054 (2016). doi 10.1021/acs.nanolett.6b03276ADSCrossRefGoogle Scholar
- 23.L. M. Schneider, S. Lippert, J. Kuhnert, O. Ajayi, D. Renaud, S. Firoozabadi, Q. Ngo, R. Guo, Y. D. Kim, W. Heimbrodt, J. C. Hone, and A. Rahimi-Iman, Nano-Struct. Nano-Objects (2017). doi 10.1016/j.nanoso.2017.08.009Google Scholar
- 24.T. Godde, D. Schmidt, J. Schmutzler, M. Aßmann, J. Debus, F. Withers, E. M. Alexeev, O. del Pozo-Zamudio, O. V. Skrypka, K. S. Novoselov, M. Bayer, and A. I. Tartakovskii, Phys. Rev. B 94, 165301 (2016). doi 10.1103/PhysRevB.94.165301ADSCrossRefGoogle Scholar
- 25.J. Huang, T. B. Hoang, and M. H. Mikkelsen, Sci. Rep. 6, 22414 (2016). doi 10.1038/srep22414ADSCrossRefGoogle Scholar
- 26.H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, Phys. Rev. B 87, 165409 (2013). doi 10.1103/PhysRevB.87.165409ADSCrossRefGoogle Scholar
- 27.B. Amin, T. P. Kaloni, and U. Schwingenschlögl, RSC Adv. 4, 34561 (2014). doi 10.1039/C4RA06378CCrossRefGoogle Scholar
- 28.C. Klingshirn, Semiconductor Optics (Springer, Berlin, Heidelberg, 2007). doi 10.1007/978-3-540-38347-5CrossRefGoogle Scholar
- 29.von K. Rottkay, T. Richardson, M. Rubin, and J. Slack, in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XV, Proc. SPIE 3138, 9 (1997).ADSCrossRefGoogle Scholar
- 30.A. Steinhoff, J. H. Kim, F. Jahnke, M. Rösner, D. S. Kim, C. Lee, G. H. Han, M. S. Jeong, T. O. Wehling, and C. Gies, Nano Lett. 15, 6841 (2015). doi 10.1021/acs.nanolett.5b02719ADSCrossRefGoogle Scholar
- 31.S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, Phys. Rev. B 90, 155449 (2014). doi 10.1103/PhysRevB.90.155449ADSCrossRefGoogle Scholar
- 32.C. Daniel, L. M. Herz, C. Silva, F. J. M. Hoeben, P. Jonkheijm, A. P. H. J. Schenning, and E. W. Meijer, Phys. Rev. B 68, 235212 (2003). doi 10.1103/Phys-RevB.68.235212ADSCrossRefGoogle Scholar
- 33.A. Suna, Phys. Rev. B 1, 1716 (1970). doi 10.1103/PhysRevB.1.1716ADSCrossRefGoogle Scholar
- 34.K. D. Park, O. Khatib, V. Kravtsov, G. Clark, X. Xu, and M. B. Raschke, Nano Lett. 16, 2621 (2016). doi 10.1021/acs.nanolett.6b00238ADSCrossRefGoogle Scholar
- 35.A. M. van der Zande, P. Y. Huang, D. A. Chenet, T.C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nat. Mater. 12, 554 (2013). doi 10.1038/nmat3633ADSCrossRefGoogle Scholar