Skip to main content
Log in

Composition and Band Structure of the Native Oxide Nanolayer on the Ion Beam Treated Surface of the GaAs Wafer

  • XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Characterization
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Detailed information on GaAs oxide properties is important for solving the problem of passivating and dielectric layers in the GaAs-based electronics. The elemental and chemical compositions of the native oxide layer grown on the atomically clean surface of an n-GaAs (100) wafer etched by Ar+ ions have been studied by synchrotron-based photoelectron spectroscopy. It has been revealed that the oxide layer is essentially enriched in the Ga2O3 phase which is known to be a quite good dielectric as compared to As2O3. The gallium to arsenic ratio reaches the value as high as [Ga]/[As] = 1.5 in the course of oxidation. The Ga-enrichment occurs supposedly due to diffusion away of As released in preferential oxidation of Ga atoms. A band diagram was constructed for the native oxide nanolayer on the n-GaAs wafer. It has been shown that this natural nanostructure has features of a p–n heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Baca and C. I. H. Ashby, Fabrication of GaAs Devices (IET, London, UK, 2005).

    Book  Google Scholar 

  2. G. P. Schwartz, G. J. Gualtieri, G. W. Kammlott, and B. Schwartz, J. Electrochem. Soc. 126, 1737 (1979).

    Article  Google Scholar 

  3. J. P. Contour, J. Massies, and A. Saletes, Jpn. J. Appl. Phys. 24, L563 (1985).

    Article  ADS  Google Scholar 

  4. T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys. 31, 3981 (1992).

    Article  ADS  Google Scholar 

  5. G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994).

    Article  ADS  Google Scholar 

  6. C. C. Surdu-Bob, S. O. Saied, and J. L. Sullivan, Appl. Surf. Sci. 183, 126 (2001).

    Article  ADS  Google Scholar 

  7. M. R. Vilar, J. E. Beghdadi, F. Debontridder, R. Artzi, R. Naaman, A. M. Ferraria, and A. M. Botelho do Rego, Surf. Interface Anal. 37, 673 (2005).

    Article  Google Scholar 

  8. L. Feng, L. Zhang, H. Liu, X. Gao, Zh. Miao, L. Wang, S. Niu, and C. Cheng, Proc. SPIE 8912, 89120N (2013).

    Article  Google Scholar 

  9. X. Cheng, F. Shi, H. Cheng, S. Niu, L. Wang, Zh. Miao, and C. Chen, Proc. SPIE 9295, 929503 (2014).

    Article  Google Scholar 

  10. S. I. Fedoseenko, D. V. Vyalikh, I. E. Iossifov, R. Follath, S. A. Gorovikov, R. Püttner, J. S. Schmidt, S. L. Molodtsov, V. K. Adamchuk, W. Gudat, and G. Kaindl, Nucl. Instrum. Methods Phys. Res., Sect. A 505, 718 (2003).

    Article  ADS  Google Scholar 

  11. I. L. Singer, J. S. Murday, and J. Comas, J. Vac. Sci. Technol. 18, 161 (1981).

    Article  ADS  Google Scholar 

  12. V. M. Mikoushkin, V. V. Bryzgalov, Yu. S. Gordeev, S. Yu. Nikonov, A. P. Solonitsina, A. A. Zhuravleva, and M. M. Brzhezinskaya, Phys. Status Solidi C 6, 2655 (2009).

    Article  ADS  Google Scholar 

  13. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (Wiley, Chichester, 1983).

    Google Scholar 

  14. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 17, 927 (1991).

    Article  Google Scholar 

  15. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).

    Article  Google Scholar 

  16. J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).

    Article  ADS  Google Scholar 

  17. D. P. Norton, Mater. Sci. Eng. R 43, 139 (2004).

    Article  Google Scholar 

  18. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Mikoushkin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikoushkin, V.M., Bryzgalov, V.V., Nikonov, S.Y. et al. Composition and Band Structure of the Native Oxide Nanolayer on the Ion Beam Treated Surface of the GaAs Wafer. Semiconductors 52, 593–596 (2018). https://doi.org/10.1134/S1063782618050214

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618050214

Navigation