Semiconductors

, Volume 52, Issue 5, pp 618–621 | Cite as

Thermal Smoothing and Roughening of GaAs Surfaces: Experiment and Monte Carlo Simulation

  • D. M. Kazantsev
  • I. O. Akhundov
  • V. L. Alperovich
  • N. L. Shwartz
  • A. S. Kozhukhov
  • A. V. Latyshev
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Technology

Abstract

GaAs thermal smoothing at temperatures T ≤ 650°C in the conditions close to equilibrium yields surfaces with atomically smooth terraces separated by steps of monatomic height. At higher temperatures surface smoothing is changed to roughening. Possible reasons of surface roughening at elevated temperatures are studied by means of Monte Carlo simulation and compared with the experimental results on GaAs. It is proved that GaAs roughening at elevated temperatures is caused by kinetic instabilities due to deviations from equilibrium towards growth or sublimation. The microscopic mechanisms of kinetic-driven roughening are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Latyshev, A. L. Aseev, A. B. Krasilnikov, and S. I. Stenin, Surf. Sci. 213, 157 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    H. C. Jeong and E. D. Williams, Surf. Sci. Rep. 34, 171 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    A. Pimpinelli and J. Villain, Physics of Crystal Growth (Cambridge Univ. Press, Cambridge, 1998)CrossRefGoogle Scholar
  4. 4.
    Z. Ding, D. W. Bullock, P. M. Thibado, V. P. LaBella, and K. Mullen, Phys. Rev. Lett. 90, 216109 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    J. E. Epler, T. A. Jung, and H. P. Schweizer, Appl. Phys. Lett. 62, 143 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    V. L. Alperovich, I. O. Akhundov, N. S. Rudaya, D. V. Sheglov, E. E. Rodyakina, A. V. Latyshev, and A. S. Terekhov, Appl. Phys. Lett. 94, 101908 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    J. Lapujoulade, Surf. Sci. Rep. 20, 191 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    D. M. Kazantsev, I. O. Akhundov, A. N. Karpov, N. L. Shwartz, V. L. Alperovich, A. S. Terekhov, and A. V. Latyshev, App. Surf. Sci. 333, 141 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    I. O. Akhundov, D. M. Kazantsev, V. L. Alperovich, D. V. Sheglov, A. S. Kozhukhov, and A. V. Latyshev, Appl. Surf. Sci. 406, 307 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    J. Tersoff, D. E. Jesson, and W. X. Tang, Science 324, 236 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. M. Kazantsev
    • 1
    • 2
  • I. O. Akhundov
    • 1
    • 2
  • V. L. Alperovich
    • 1
    • 2
  • N. L. Shwartz
    • 1
    • 3
  • A. S. Kozhukhov
    • 1
  • A. V. Latyshev
    • 1
    • 2
  1. 1.Rzhanov Institute of Semiconductor PhysicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations