Semiconductors

, Volume 52, Issue 5, pp 632–635 | Cite as

Fabrication of Silicon Nanostructures for Application in Photonics

  • A. N. Kamalieva
  • N. A. Toropov
  • T. A. Vartanyan
  • M. A. Baranov
  • P. S. Parfenov
  • K. V. Bogdanov
  • Y. A. Zharova
  • V. A. Tolmachev
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, Russia, June 26–30, 2017. Nanostructure Technology

Abstract

Silicon is the primary material of modern electronics. It also possesses bright potentials for applications in nanophotonics. At the same time optical properties of bulk silicon do not fully satisfy requirements imposed on them. Fortunately, properties of silicon nanostructures strongly depend on their shapes and sizes. In this regard, of special interest is the development of fabrication and post-processing methods of silicon nanostructures. In this contribution we propose a method for silicon nanostructures fabrication combining the technique of high-vacuum deposition with metal-assisted chemical etching. SEM images as well as ellipsometry, Raman scattering and optical spectroscopy data prove that the desired structural changes were obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Cao, E. J. R. Sudhölter, and L. C. P. M. de Smet, Sensors 14, 245 (2014).CrossRefGoogle Scholar
  2. 2.
    E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 239 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    M. R. Zamfir, H. T. Nguyen, E. Moyen, Y. H. Lee, and D. Pribat, J. Mater. Chem. A 1, 9566 (2013).CrossRefGoogle Scholar
  5. 5.
    A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Science 354, aag2472 (2016).CrossRefGoogle Scholar
  6. 6.
    A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, Sci. Rep. 2, 492 (2012).CrossRefGoogle Scholar
  7. 7.
    U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Nat. Commun. 5, 3402 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, Nano Lett. 10, 2649 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    P. Spinelli, M. A. Verschuuren, and A. Polman, Nat. Commun. 3, 692 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, Nat. Commun. 4, 1904 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    P. Moitra, B. A. Slovick, W. Ii, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, ACS Photon. 2, 692 (2015).CrossRefGoogle Scholar
  12. 12.
    Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, Adv. Mater. 23, 285 (2011).CrossRefGoogle Scholar
  13. 13.
    N. A. Zulina, I. M. Pavlovetc, M. A. Baranov, and I. Y. Denisyuk, Opt. Laser Technol. 89, 41 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    T. A. Vartanyan, N. B. Leonov, V. V. Khromov, S. G. Przhibelskii, N. A. Toropov, and E. N. Kaliteevskaya, Proc. SPIE 8414, 841404 (2012).CrossRefGoogle Scholar
  15. 15.
    A. Kamalieva, N. Toropov, I. Reznik, and T. Vartanyan, Opt. Quantum Electron. 48, 562 (2016).CrossRefGoogle Scholar
  16. 16.
    V. Shvets, E. Spesivtsev, V. Rykhlitskii, and N. Mikhailov, Nanotechnol. Russ. 4, 201 (2009).CrossRefGoogle Scholar
  17. 17.
    D. Barba, F. Martin, and G. G. Ross, Nanotechnology 19, 115707 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Kamalieva
    • 1
  • N. A. Toropov
    • 1
  • T. A. Vartanyan
    • 1
  • M. A. Baranov
    • 1
  • P. S. Parfenov
    • 1
  • K. V. Bogdanov
    • 1
  • Y. A. Zharova
    • 1
    • 2
  • V. A. Tolmachev
    • 2
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations