Advertisement

Semiconductors

, Volume 52, Issue 4, pp 436–441 | Cite as

Magnetooptical Studies and Stimulated Emission in Narrow Gap HgTe/CdHgTe Structures in the Very Long Wavelength Infrared Range

  • V. V. Rumyantsev
  • L. S. Bovkun
  • A. M. Kadykov
  • M. A. Fadeev
  • A. A. Dubinov
  • V. Ya. Aleshkin
  • N. N. Mikhailov
  • S. A. Dvoretsky
  • B. Piot
  • M. Orlita
  • M. Potemski
  • F. Teppe
  • S. V. Morozov
  • V. I. Gavrilenko
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Optoelectronics, Optical Properties
  • 23 Downloads

Abstract

We investigate the prospects of HgTe/HgCdTe quantum wells for long-wavelength interband lasers (λ = 15–30 μm). The properties of stimulated emission (SE) and magnetoabsorbtion data of QWs structures with wide-gap HgCdTe dielectric waveguide provide an insight on dominating non-radiative carrier recombination mechanism. It is shown that the carrier heating under intense optical pumping is the main factor limiting the SE wavelength and intensity, since the Auger recombination is greatly enhanced when carriers populate high energy states in the valence band.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science (Washington, DC, U. S.) 314 (5806), 1757 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    B. Buttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brune, H. Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Nat. Phys. 7, 418 (2011).CrossRefGoogle Scholar
  3. 3.
    Konig, M., S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science (Washington, DC, U. S.) 318 (5851), 766 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    Ruffenach, S., A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winnerl, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretskii, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, APL Mater. 5, 035503 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    V. Y. Aleshkin, A. A. Dubinov, and V. Ryzhii, JETP Lett. 89, 63 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, Phys. Rev. B 85, 035443 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    S. Chakraborty, O. P. Marshall, T. G. Folland, Y.-J. Kim, A. N. Grigorenko, and K. S. Novoselov, Science (Washington, DC, U. S.) 351 (6270), 246 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Nat. Mater. 11, 865 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    I. Gierz, Nat. Phys. 11, 12 (2014).CrossRefGoogle Scholar
  10. 10.
    M. F. Anwar, T. W. Crowe, T. Manzur, W. Terashima, and H. Hirayama, Proc. SPIE 9483, 948304 (2015).CrossRefGoogle Scholar
  11. 11.
    B. S. Williams, Nat Photon. 1, 517 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    M. S. Vitiello, G. Scalari, B. Williams, and P. de Natale, Opt. Express 23, 5167 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    L. N. Kurbatov, A. D. Britov, S. M. Karavaev, S. D. Sivachenko, S. N. Maksimovskii, I. I. Ovchinnikov, M. M. Rzaev, and P. M. Starik, JETP Lett. 37, 499 (1983).ADSGoogle Scholar
  14. 14.
    A. R. Calawa, J. O. Dimmock, T. C. Harman, and I. Melngailis, Phys. Rev. Lett. 23, 7 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    K. V. Maremyanin, A. V. Ikonnikov, A. V. Antonov, V. V. Rumyantsev, S. V. Morozov, L. S. Bovkun, K. R. Umbetalieva, E. G. Chizhevskiy, I. I. Zasavitskiy, and V. I. Gavrilenko, Semiconductors 49, 1623 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    V. S. Varavin, V. V. Vasiliev, S. A. Dvoretsky, N. N. Mikhailov, V. N. Ovsyuk, Y. G. Sidorov, A.O. Suslyakov, M. V. Yakushev, and A. L. Aseev, Proc. SPIE 5136, 381 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, and S. Ganichev, J. Electron. Mater. 39, 918 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    N. N. Mikhailov, R. N. Smirnov, S. A. Dvoretsky, Yu. G. Sidorov, V. A. Shvets, E. V. Spesivtsev, and S. V. Rykhlitski, Int. J. Nanotechnol. 3, 120 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    Y. G. Sidorov, M. V. Yakushev, V. S. Varavin, A. V. Kolesnikov, E. M. Trukhanov, I. V. Sabinina, and I. D. Loshkarev, Phys. Solid State 57, 2151 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 104, 072102 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    V. V. Rumyantsev, S. V. Morozov, A. V. Antonov, M. S. Zholudev, K. E. Kudryavtsev, V. I. Gavrilenko, S. A. Dvoretskii, and N. N. Mikhailov, Semicond. Sci. Technol. 28, 125007 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 105, 022102 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    S. V. Morozov, M. S. Joludev, A. V. Antonov, V. V. Rumyantsev, V. I. Gavrilenko, V. Y. Aleshkin, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretskiy, O. Drachenko, S. Winnerl, H. Schneider, and M. Helm, Semiconductors 46, 1362 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N.N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 108, 092104 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, K. E. Kudryavtsev, A. A. Dubinov, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretckiy, V. I. Gavrilenko, S. Winnerl, and M. Helm, in Proceedings of the 41st International Conference on Infrared, Millimeter, and Terahertz Waves IRMMW-THz, 2016.Google Scholar
  26. 26.
    J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, J. Cryst. Growth 197, 529 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    C. Roux, E. Hadji, and J. L. Pautrat, Appl. Phys. Lett. 75, 1661 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    C. Roux, E. Hadji, and J. L. Pautrat, Appl. Phys. Lett. 75, 3763 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    J. M. Arias, M. Zandian, R. Zucca, and J. Singh, Semicond. Sci. Technol. 8, S255 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    V. V. Rumyantsev, M. A. Fadeev, S. V. Morozov, A. A. Dubinov, K. E. Kudryavtsev, A. M. Kadykov, I.V. Tuzov, S. A. Dvoretskii, N. N. Mikhailov, V. I. Gavrilenko, and F. Teppe, Semiconductors 50, 1654 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    S. V. Morozov, V. V. Rumyantsev, A. A. Dubinov, A. V. Antonov, A. M. Kadykov, K. E. Kudryavtsev, D. I. Kuritsin, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 107, 042105 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    O. Madelung, Semiconductors: Data Handbook (Springer, New York, 2003).Google Scholar
  33. 33.
    M. Zholudev, F. Teppe, M. Orlita, C. Consejo, J. Torres, N. Dyakonova, M. Czapkiewicz, J. Wrobel, G. Grabecki, N. Mikhailov, S. Dvoretskii, A. Ikonnikov, K. Spirin, V. Aleshkin, V. Gavrilenko, and W. Knap, Phys. Rev. B 86, 205420 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    M. S. Zholudev, A. V. Ikonnikov, F. Teppe, M. Orlita, K. V. Maremyanin, K. E. Spirin, V. I. Gavrilenko, W. Knap, S. A. Dvoretskiy, and N. N. Mihailov, Nanoscale Res. Lett. 7, 534 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    M. Schultz, U. Merkt, A. Sonntag, U. Rossler, R. Winkler, T. Colin, P. Helgesen, T. Skauli, and S. Lovold, Phys. Rev. B 57, 14772 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier Science, North-Holland, 1991).Google Scholar
  37. 37.
    A. S. Polkovnikov and G. G. Zegrya, Phys. Rev. B 58, 4039 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Rumyantsev
    • 1
    • 2
  • L. S. Bovkun
    • 1
    • 3
  • A. M. Kadykov
    • 1
    • 7
  • M. A. Fadeev
    • 1
  • A. A. Dubinov
    • 1
    • 2
  • V. Ya. Aleshkin
    • 1
    • 2
  • N. N. Mikhailov
    • 4
    • 5
  • S. A. Dvoretsky
    • 4
  • B. Piot
    • 3
  • M. Orlita
    • 3
    • 6
  • M. Potemski
    • 3
  • F. Teppe
    • 7
  • S. V. Morozov
    • 1
    • 2
  • V. I. Gavrilenko
    • 1
    • 2
  1. 1.Institute for Physics of Microstructures of Russian Academy of ScienceNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Laboratoire National des Champs Magnétiques IntensesLNCMI-CNRS-UGA-UPS-INSA-EMFLGrenobleFrance
  4. 4.A. V. Rzhanov Institute of Semiconductor PhysicsSiberian Branch of Russian Academy of SciencesNovosibirskRussia
  5. 5.Novosibirsk State UniversityNovosibirskRussia
  6. 6.Institute of PhysicsCharles UniversityPragueCzech Republic
  7. 7.UMR CNRS 5221, GIS-TERALABUniversité MontpellierMontpellierFrance

Personalised recommendations