Skip to main content
Log in

Electronic States and Persistent Currents in Nanowire Quantum Ring

  • XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Spin Related Phenomena In Nanostructures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A new model of a quantum ring defined inside a nanowire is proposed. The one-particle Hamiltonian for electron in [111]-oriented nanowire quantum ring is constructed taking into account both Rashba and Dresselhaus spin-orbit coupling. The energy levels as a function of magnetic field are found using the exact numerical diagonalization. The persistent currents (both charge and spin) are calculated. The specificity of spin-orbit coupling and arising anticrossings in energy spectrum lead to unusual features in persistent current behavior. The variation of magnetic field or carrier concentration by means of gates can lead to pure spin persistent current with the charge current being zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Funk, M. Royo, I. Zardo, D. Rudolph, S. Morkötter, B. Mayer, J. Becker, A. Bechtold, S. Matich, M. Döblinger, M. Bichler, G. Koblmüller, J. J. Finley, A. Bertoni, G. Goldoni, and G. Abstreiter, Nano Lett. 13, 6189 (2013).

    Article  ADS  Google Scholar 

  2. G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, Nano Lett. 16, 1017 (2016).

    Article  ADS  Google Scholar 

  3. S. Estévez Hernández, M. Akabori, K. Sladek, C. Volk, S. Alagha, H. Hardtdegen, M. G. Pala, N. Demarina, D. Grützmacher, and T. Schäpers, Phys. Rev. B 82, 235303 (2010).

    Article  ADS  Google Scholar 

  4. D. V. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B 77, 235301 (2008).

    Article  ADS  Google Scholar 

  5. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Buttiker, Y. Imry, and R. Landauer, Phys. Lett. A 96, 365 (1983).

    Article  ADS  Google Scholar 

  7. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  8. A. V. Chaplik and L. I. Magarill, Superlatt. Microstruct. 18, 321 (1995).

    Article  ADS  Google Scholar 

  9. F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, Phys. Rev. B 66, 033107 (2002).

    Article  ADS  Google Scholar 

  10. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  ADS  Google Scholar 

  11. M. I. Dyakonov and V. Yu. Kachorovskii, Sov. Phys. Semicond. 20, 110 (1986).

    Google Scholar 

  12. J. S. Sheng and K. Chang, Phys. Rev. B 74, 235315 (2006).

    Article  ADS  Google Scholar 

  13. I. A. Kokurin, Solid State Commun. 195, 49 (2014).

    Article  ADS  Google Scholar 

  14. I. A. Kokurin, Physica E (Amsterdam) 74, 264 (2015).

    Article  ADS  Google Scholar 

  15. J. Splettstoesser, M. Governale, and U. Zülicke, Phys. Rev. B 68, 165341 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kokurin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokurin, I.A. Electronic States and Persistent Currents in Nanowire Quantum Ring. Semiconductors 52, 535–538 (2018). https://doi.org/10.1134/S1063782618040188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618040188

Navigation