Advertisement

Semiconductors

, Volume 52, Issue 4, pp 535–538 | Cite as

Electronic States and Persistent Currents in Nanowire Quantum Ring

  • I. A. Kokurin
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Spin Related Phenomena In Nanostructures

Abstract

A new model of a quantum ring defined inside a nanowire is proposed. The one-particle Hamiltonian for electron in [111]-oriented nanowire quantum ring is constructed taking into account both Rashba and Dresselhaus spin-orbit coupling. The energy levels as a function of magnetic field are found using the exact numerical diagonalization. The persistent currents (both charge and spin) are calculated. The specificity of spin-orbit coupling and arising anticrossings in energy spectrum lead to unusual features in persistent current behavior. The variation of magnetic field or carrier concentration by means of gates can lead to pure spin persistent current with the charge current being zero.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Funk, M. Royo, I. Zardo, D. Rudolph, S. Morkötter, B. Mayer, J. Becker, A. Bechtold, S. Matich, M. Döblinger, M. Bichler, G. Koblmüller, J. J. Finley, A. Bertoni, G. Goldoni, and G. Abstreiter, Nano Lett. 13, 6189 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    G. Nylund, K. Storm, S. Lehmann, F. Capasso, and L. Samuelson, Nano Lett. 16, 1017 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    S. Estévez Hernández, M. Akabori, K. Sladek, C. Volk, S. Alagha, H. Hardtdegen, M. G. Pala, N. Demarina, D. Grützmacher, and T. Schäpers, Phys. Rev. B 82, 235303 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    D. V. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B 77, 235301 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Buttiker, Y. Imry, and R. Landauer, Phys. Lett. A 96, 365 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).ADSGoogle Scholar
  8. 8.
    A. V. Chaplik and L. I. Magarill, Superlatt. Microstruct. 18, 321 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, Phys. Rev. B 66, 033107 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955).ADSCrossRefGoogle Scholar
  11. 11.
    M. I. Dyakonov and V. Yu. Kachorovskii, Sov. Phys. Semicond. 20, 110 (1986).Google Scholar
  12. 12.
    J. S. Sheng and K. Chang, Phys. Rev. B 74, 235315 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    I. A. Kokurin, Solid State Commun. 195, 49 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    I. A. Kokurin, Physica E (Amsterdam) 74, 264 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    J. Splettstoesser, M. Governale, and U. Zülicke, Phys. Rev. B 68, 165341 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Physics and ChemistryMordovia State UniversitySaranskRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations