Advertisement

Semiconductors

, Volume 52, Issue 4, pp 452–457 | Cite as

Purcell Effect in Tamm Plasmon Structures with QD Emitter

  • A. R. Gubaydullin
  • C. Symonds
  • J. Bellessa
  • K. A. Ivanov
  • E. D. Kolykhalova
  • M. E. Sasind
  • G. Pozina
  • M. A. Kaliteevski
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Optoelectronics, Optical Properties

Abstract

We study Tamm plasmon structure based on GaAs/Al0.95GaAs distributed Bragg reflector covered by thin silver layer, with active area formed by InAs quantum dots. We have measured the spectral and angular characteristics of photoluminescence and performed theoretical calculation of the spontaneous emission rate (modal Purcell factor) in the structure by using S-quantization formalism. We show that for Tamm plasmon mode the spontaneous emission can be enhanced by more than an order of magnitude, despite absorption in metallic layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Khurgin, Nat. Nanotechnol. 10, 2 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    K. Ding et al., Opt. Express 21, 4728 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    R. Bruckner et al., Nat. Photon. 6, 322 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    C. Symonds et al., Nano Lett. 13, 3179 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, A. Lemaitre, and P. Senellart, Appl. Phys. Lett. 100, 232111 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    M. E. Sasin et al., Appl. Phys. Lett. 92, 251112 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Kaliteevski et al., Phys. Rev. B 76, 165415 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    M. A. Kaliteevski et al., Plasmonics 10, 281 (2015).CrossRefGoogle Scholar
  9. 9.
    R. Brückner et al., Appl. Phys. Lett. 100, 062101 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    S. Brand, R. A. Abram, and M. A. Kaliteevski, Phys. Rev. B 75, 035102 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37 (1946).ADSCrossRefGoogle Scholar
  12. 12.
    M. V. Rybin, S. F. Mingaleev, M. F. Limonov, and Y. S. Kivshar, Sci. Rep. 6, 20599 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    A. S. Shkolnik et al., Appl. Phys. Lett. 86, 211112 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    M. A. Kaliteevski, A. R. Gubaydullin, K. A. Ivanov, and V. A. Mazlin, Opt. Spectrosc. 121, 410 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    K. A. Ivanov, A. R. Gubaydullin, K. M. Morozov, M. E. Sasin, and M. A. Kaliteevski, Opt. Spectrosc. 122, 864 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, IEE Proc.–Optoelectron. 145, 391 (1998)CrossRefGoogle Scholar
  17. 17.
    H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. R. Gubaydullin
    • 1
    • 2
  • C. Symonds
    • 2
  • J. Bellessa
    • 2
  • K. A. Ivanov
    • 1
    • 3
  • E. D. Kolykhalova
    • 1
    • 4
    • 5
  • M. E. Sasind
    • 1
  • G. Pozina
    • 6
  • M. A. Kaliteevski
    • 1
    • 3
    • 4
  1. 1.St Petersburg Academic UniversitySt. PetersburgRussia
  2. 2.Univ Lyon, Université Claude Bernard Lyon 1, CNRSInstitut Lumière MatièreLYONFrance
  3. 3.ITMO UniversitySt. PetersburgRussia
  4. 4.Ioffe InstituteSt. PetersburgRussia
  5. 5.Saint Petersburg Scientific CenterSt. PetersburgRussia
  6. 6.Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden

Personalised recommendations