, Volume 52, Issue 4, pp 414–419 | Cite as

Structural, Mechanical and Thermodynamic Properties of Cu2CoXS4 (X = Si, Ge, Sn) Studied by Density Functional Theory

  • Yu Jing Dong
  • Yan Li Gao


We have investigated the Structural, mechanical and thermodynamic properties of Cu2CoXS4 (X = Si, Ge, Sn) by using the density functional theory method. In this paper, we used GGA-PBE functional to find the equilibrium structural parameters and to calculate the elastic properties. The Mulliken population analysis indicates the bonds between S atoms and other three atoms in Cu2CoXS4 (X = Si, Ge, Sn) exhibit the feature of covalent bond. Furthermore, the calculated elastic constants prove the mechanical stability of Cu2CoXS4 (X = Si, Ge, Sn) in I\(\bar 4\) 2m structure. The results are given for B/G and A U reveal Cu2CoXS4 (X = Si, Ge, Sn) can behave as a ductile and elastic material. Finally, the heat capacity, thermal expansion, entropy and Debye temperature are also reported at the different pressures (0~50 GPa) and temperatures (0~1000 K).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Matsushita, T. Maeda, and A. Katsui, J. Cryst. Growth 208, 416 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    W. Schafer and R. Nitsche, Mater. Res. Bull. 9, 645 (1974).CrossRefGoogle Scholar
  3. 3.
    L. Guen and W. S. Glaunsinger, J. Solid State Chem. 35, 10 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    A. Gupta, K. Mokurala, A. Kamble, S. Shankar, and S. Mallick, Solid State Phys. 1665, 140022 (2015).Google Scholar
  5. 5.
    T. Bernert and A. Pfitzner, Zeitschr. Anorg. Allgem. Chem. 632, 1213 (2010).CrossRefGoogle Scholar
  6. 6.
    S. R. Hall, J. T. Szymanski, and J. M. Stewart, Can. Mineral. 2, 131 (1978).Google Scholar
  7. 7.
    K. Mokurala, A. Kamble, and P. Bhargava, in Proceedings of the IEEE Photovoltaic Specialist Conference, 2015, p. 1.Google Scholar
  8. 8.
    A. Ghosh, D. K. Chaudhary, and A. Biswas, RSC Adv. 6, 115204 (2016).CrossRefGoogle Scholar
  9. 9.
    X. Y. Zhang, N. Z. Bao, and K. Ramasamy, Chem. Commun. 43, 4956 (2012).CrossRefGoogle Scholar
  10. 10.
    F. D. Benedetto, G. P. Bernardini, and D. Borrini, Phys. Chem. Miner. 31, 683 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Cui, R. P. Deng, and G. Wang, J. Mater. Chem. 22, 23136 (2012).CrossRefGoogle Scholar
  12. 12.
    X. Y. Zhang, N. Z. Bao, B. P. Lin, and A. Gupta, Nanotechnology 24, 105706 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Macias, M. Quintero, and E. Moreno, Rev. Latinoam. Metalurg. Mater. 34, 28 (2014).Google Scholar
  14. 14.
    S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Zeitschr. Kristallogr. 220, 567 (2005).ADSGoogle Scholar
  15. 15.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    L. Guo, G. Hu, and W. J. Feng, Struct. Acta Phys.- Chim. Sin. 29, 929 (2013).Google Scholar
  17. 17.
    J. H. Yuan, B. Gao, W. Wang, et al., Acta Phys.-Chim. Sin. 31, 1302 (2015).Google Scholar
  18. 18.
    Y. J. Dong and Y. L. Gao, Chalcogenide Lett. 13, 515 (2016).Google Scholar
  19. 19.
    Z. J. Liu, X. W. Sun, and X. M. Tan, Solid State Commun. 144, 264 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    M. A. Blanco, A. M. Pendas, and E. Francisco, J. Mol. Struct.: THEOCHEM 368, 245 (1996).CrossRefGoogle Scholar
  21. 21.
    E. Francisco, J. M. Recio, and M. A. Blanco, J. Phys. Chem. A 102, 1595 (2013).CrossRefGoogle Scholar
  22. 22.
    F. Birch, J. Geophys. Res. 83, 1257 (1978).ADSCrossRefGoogle Scholar
  23. 23.
    F. Birch, Phys. Rev. 71, 809 (1947).ADSCrossRefGoogle Scholar
  24. 24.
    F D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).ADSCrossRefGoogle Scholar
  25. 25.
    Y. J. Dong and Y. L. Gao, Yunnan Normal Univ. 36, 14 (2016).Google Scholar
  26. 26.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1988)zbMATHGoogle Scholar
  27. 27.
    S. O. Kart and T. Cagin, J. Alloys Compd. 508, 177 (2010)CrossRefGoogle Scholar
  28. 28.
    R. Hill, Proc. Phys. 65, 349 (1952).ADSCrossRefGoogle Scholar
  29. 29.
    S. F. Pugh, Philos. Mag. 45, 823 (2009).CrossRefGoogle Scholar
  30. 30.
    X. Zhang, C. Ying, and Z. Li, Superlatt. Microstruct. 52, 459 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    I. N. Frantsevich, F. F. Voronov, and S. A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Ed. by I. N. Frantsevich (Naukova Dumka, Kiev, 1983), p. 60 [in Russian].Google Scholar
  32. 32.
    S. I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    H. Chen, L. Yang, and J. Long, Superlatt. Microstruct. 79, 156 (2014).CrossRefGoogle Scholar
  34. 34.
    M. A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004).ADSCrossRefGoogle Scholar
  35. 35.
    E. Francisco, M. A. Blanco, and G. Sanjurjo, Phys. Rev. B 63, 385 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Science and TechnologyXinyang UniversityXinyangChina
  2. 2.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina

Personalised recommendations