Skip to main content
Log in

High Temperature Quantum Kinetic Effects in Silicon Nanosandwiches

  • XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Transport In Heterostructures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. F. Ezawa, Quantum Hall Effects: Recent Theoretical and Experimental Developments (World Scientific, Singapore, 2013).

    Book  Google Scholar 

  2. J. P. Eisenstein, H. L. Stormer, V. Narayanamurti, A. Y. Cho, A. C. Gossard, and C. W. Tu, Phys. Rev. Lett. 55, 875 (1985).

    Article  ADS  Google Scholar 

  3. G. Landwehr, J. Gerschütz, S. Oehling, A. Pfeuffer-Jeschke, V. Latussek, and C. R. Becker, Physica E 6, 713 (2000).

    Article  ADS  Google Scholar 

  4. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  5. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  6. A. A. Zyuzin and D. Loss, Phys. Rev. B 90, 125443 (2014).

    Article  ADS  Google Scholar 

  7. N. T. Bagraev, N. G. Galkin, W. Gehlhoff, L. E. Klyachkin, and A. M. Malyarenko, J. Phys.: Condens. Matter 20, 164202 (2008).

    ADS  Google Scholar 

  8. N. T. Bagraev, L. E. Klyachkin, A. A. Kudryavtsev, A. M. Malyarenko, and V. V. Romanov, in Superconductor, Ed. by A. M. Luiz (SCIYO, Croatia, (2010), Chap. 4.

  9. N. T. Bagraev, V. K. Ivanov, L. E. Klyachkin, and I. A. Shelykh, Phys. Rev. B 70, 155315 (2004).

    Article  ADS  Google Scholar 

  10. N. T. Bagraev, V. A. Mashkov, E. Yu. Danilovsky, W. Gehlhoff, D. S. Gets, L. E. Klyachkin, A. A. Kudryavtsev, R. V. Kuzmin, A. M. Malyarenko, and V. V. Romanov, Appl. Magn. Reson. 39, 113 (2010).

    Article  Google Scholar 

  11. R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

    Article  ADS  Google Scholar 

  12. R. B. Laughlin, Phys. Rev. B 27, 3383 (1983).

    Article  ADS  Google Scholar 

  13. B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).

    Google Scholar 

  14. V. T. Dolgopolov, Phys. Usp. 57, 105 (2014).

    Article  ADS  Google Scholar 

  15. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  16. R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and J. H. English, Phys. Rev. Lett. 59, 1776 (1987).

    Article  ADS  Google Scholar 

  17. R. E. Peale, Y. Mochizuki, H. Sun, and G. D. Watkins, Phys. Rev. B 45, 5933 (1992).

    Article  ADS  Google Scholar 

  18. H. Ch. Alt, Phys. Rev. Lett. 65, 3421 (1990).

    Article  ADS  Google Scholar 

  19. N. T. Bagraev, J. Phys. (Paris) I 1, 1511 (1991).

    Google Scholar 

  20. T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).

    Article  ADS  Google Scholar 

  21. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988).

    Article  ADS  Google Scholar 

  22. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhowen, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  23. A. Yacoby, H. L. Stormer, N. S. Wingreen, L.N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).

    Article  ADS  Google Scholar 

  24. K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie, Phys. Rev. Lett. 77, 135 (1996).

    Article  ADS  Google Scholar 

  25. E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).

    Article  ADS  Google Scholar 

  26. M. Rosenau da Costa, I. A. Shelykh, and N. T. Bagraev, Phys. Rev. B 76, R201302 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Rul’.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagraev, N.T., Klyachkin, L.E., Khromov, V.S. et al. High Temperature Quantum Kinetic Effects in Silicon Nanosandwiches. Semiconductors 52, 478–484 (2018). https://doi.org/10.1134/S1063782618040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618040061

Navigation