Skip to main content
Log in

GaP/Si(111) Nanowire Crystals Synthesized by Molecular-Beam Epitaxy with Switching between the Hexagonal and Cubic Phases

  • XXI International Symposium “Nanophysics And Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A theoretical and experimental description of the synthesis of GaP nanowire crystals by molecularbeam epitaxy on Si(111) substrates with the use of gold as a catalyst is presented. The ratio between the fluxes of materials to be deposited and the substrate temperature are varied for a short time during nanowire synthesis in order to analyze the possibility of producing nanoinclusions of different polytypes. It is established that variations in the ratio between the fluxes of materials to be deposited and in the growth temperature bring about the controllable formation of inclusions, among them are structurally cubic crystalline regions. The inclusions are several nanometers thick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, Nano Lett. 13, 1559 (2013).

    Article  ADS  Google Scholar 

  2. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. Bouwes Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, Nat. Commun. 3, 737 (2012).

    Article  Google Scholar 

  3. G. E. Cirlin, I. V. Shtrom, R. R. Reznik, Yu. B. Samsonenko, A. I. Khrebtov, A. D. Bouravleuv, and I. P. Soshnikov, Semiconductors 50, 1421 (2016).

    Article  ADS  Google Scholar 

  4. N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, Nano Lett. 10, 1198 (2010).

    Article  ADS  Google Scholar 

  5. F. Glas, J. C. Harmand, and J. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).

    Article  ADS  Google Scholar 

  6. I. P. Soshnikov, G. E. Cirlin, N. V. Sibirev, V. G. Dubrovskii, Yu. B. Samsonenko, D. Litvinov, and D. Gerthsen, Tech. Phys. Lett. 34, 538 (2008).

    Article  ADS  Google Scholar 

  7. V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Phys. Rev. B 78, 235301 (2008).

    Article  ADS  Google Scholar 

  8. M. V. Nazarenko, N. V. Sibirev, and V. G. Dubrovskii, Tech. Phys. 56, 311 (2011).

    Article  Google Scholar 

  9. N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, M. V. Nazarenko, and V. G. Dubrovskii, Phys. Solid State 52, 1531 (2010).

    Article  ADS  Google Scholar 

  10. V. G. Dubrovskii and J. Grecenkov, Cryst. Growth Des. 15, 340 (2015).

    Article  Google Scholar 

  11. X. Ren, H. Huang, V. G. Dubrovskii, N. V. Sibirev, M. V. Nazarenko, A. D. Bolshakov, X. Ye, Q. Wang, Y. Huang, X. Zhang, J. Guo, and X. Liu, Semicond. Sci. Technol. 26, 014034 (2011).

    Article  ADS  Google Scholar 

  12. S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, Nano Lett. 13, 4099 (2013).

    Article  ADS  Google Scholar 

  13. V. G. Dubrovskii, Appl. Phys. Lett. 104, 53110 (2014).

    Article  Google Scholar 

  14. K. A. Dick, C. Thelander, L. Samuelson, and P. Caroff, Nano Lett. 10, 3494 (2010).

    Article  ADS  Google Scholar 

  15. J. Johansson, L. S. Karlsson, K. A. Dick, J. Bolinsson, B. A. Wacaser, K. Deppert, and L. Samuelson, Cryst. Growth Des. 9, 766 (2009).

    Article  Google Scholar 

  16. S. Lehmann, D. Jacobsson, K. Deppert, and K. Dick, Nano Res. 5, 470 (2012).

    Article  Google Scholar 

  17. G. E. Cirlin, V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, Yu. B. Samsonenko, A. D. Bouravleuv, J. C. Harmand, and F. Glas, Phys. Status Solidi RRL 3, 112 (2009).

    Article  Google Scholar 

  18. V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand, and P. Werner, Nano Lett. 11, 1247 (2011).

    Article  ADS  Google Scholar 

  19. N. V. Sibirev, M. V. Nazarenko, and V. G. Dubrovskii, Tech. Phys. Lett. 38, 221 (2012).

    Article  ADS  Google Scholar 

  20. K. A. Dick, Z. Geretovszky, A. Mikkelsen, L. S. Karlsson, E. Lundgren, J.-O. Malm, J. N. Andersen, L. Samuelson, and W. Seifert, Nanotechnology 17, 1344 (2006).

    Article  ADS  Google Scholar 

  21. K. A. Dick, K. Deppert, L. S. Karlsson, W. Seifert, L. Reine Wallenberg, and L. Samuelson, Nano Lett. 6, 2842 (2006).

    Article  ADS  Google Scholar 

  22. S. Assali, J. Greil, I. Zardo, A. Belabbes, M. W. A. de Moor, S. Koelling, P. M. Koenraad, F. Bechstedt, E. P. A. M. Bakkers, and J. E. M. Haverkort, J. Appl. Phys. 120, 044304 (2016).

    Article  ADS  Google Scholar 

  23. P. J. Dean, Prog. Solid State Chem. 8, 1 (1973).

    Article  Google Scholar 

  24. P. J. Dean, Phys. Rev. 157, 655 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shtrom.

Additional information

Original Russian Text © I.V. Shtrom, N.V. Sibirev, E.V. Ubiivovk, Yu.B. Samsonenko, A.I. Khrebtov, R.R. Reznik, A.D. Bouravleuv, G.E. Cirlin, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 1, pp. 5–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtrom, I.V., Sibirev, N.V., Ubiivovk, E.V. et al. GaP/Si(111) Nanowire Crystals Synthesized by Molecular-Beam Epitaxy with Switching between the Hexagonal and Cubic Phases. Semiconductors 52, 1–5 (2018). https://doi.org/10.1134/S1063782618010219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618010219

Navigation