Advertisement

Semiconductors

, Volume 52, Issue 1, pp 1–5 | Cite as

GaP/Si(111) Nanowire Crystals Synthesized by Molecular-Beam Epitaxy with Switching between the Hexagonal and Cubic Phases

  • I. V. Shtrom
  • N. V. Sibirev
  • E. V. Ubiivovk
  • Yu. B. Samsonenko
  • A. I. Khrebtov
  • R. R. Reznik
  • A. D. Bouravleuv
  • G. E. Cirlin
XXI International Symposium “Nanophysics And Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017
  • 31 Downloads

Abstract

A theoretical and experimental description of the synthesis of GaP nanowire crystals by molecularbeam epitaxy on Si(111) substrates with the use of gold as a catalyst is presented. The ratio between the fluxes of materials to be deposited and the substrate temperature are varied for a short time during nanowire synthesis in order to analyze the possibility of producing nanoinclusions of different polytypes. It is established that variations in the ratio between the fluxes of materials to be deposited and in the growth temperature bring about the controllable formation of inclusions, among them are structurally cubic crystalline regions. The inclusions are several nanometers thick.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers, Nano Lett. 13, 1559 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. Bouwes Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, Nat. Commun. 3, 737 (2012).CrossRefGoogle Scholar
  3. 3.
    G. E. Cirlin, I. V. Shtrom, R. R. Reznik, Yu. B. Samsonenko, A. I. Khrebtov, A. D. Bouravleuv, and I. P. Soshnikov, Semiconductors 50, 1421 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    N. Akopian, G. Patriarche, L. Liu, J.-C. Harmand, and V. Zwiller, Nano Lett. 10, 1198 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    F. Glas, J. C. Harmand, and J. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    I. P. Soshnikov, G. E. Cirlin, N. V. Sibirev, V. G. Dubrovskii, Yu. B. Samsonenko, D. Litvinov, and D. Gerthsen, Tech. Phys. Lett. 34, 538 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Phys. Rev. B 78, 235301 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    M. V. Nazarenko, N. V. Sibirev, and V. G. Dubrovskii, Tech. Phys. 56, 311 (2011).CrossRefGoogle Scholar
  9. 9.
    N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, M. V. Nazarenko, and V. G. Dubrovskii, Phys. Solid State 52, 1531 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    V. G. Dubrovskii and J. Grecenkov, Cryst. Growth Des. 15, 340 (2015).CrossRefGoogle Scholar
  11. 11.
    X. Ren, H. Huang, V. G. Dubrovskii, N. V. Sibirev, M. V. Nazarenko, A. D. Bolshakov, X. Ye, Q. Wang, Y. Huang, X. Zhang, J. Guo, and X. Liu, Semicond. Sci. Technol. 26, 014034 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    S. Lehmann, J. Wallentin, D. Jacobsson, K. Deppert, and K. A. Dick, Nano Lett. 13, 4099 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    V. G. Dubrovskii, Appl. Phys. Lett. 104, 53110 (2014).CrossRefGoogle Scholar
  14. 14.
    K. A. Dick, C. Thelander, L. Samuelson, and P. Caroff, Nano Lett. 10, 3494 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    J. Johansson, L. S. Karlsson, K. A. Dick, J. Bolinsson, B. A. Wacaser, K. Deppert, and L. Samuelson, Cryst. Growth Des. 9, 766 (2009).CrossRefGoogle Scholar
  16. 16.
    S. Lehmann, D. Jacobsson, K. Deppert, and K. Dick, Nano Res. 5, 470 (2012).CrossRefGoogle Scholar
  17. 17.
    G. E. Cirlin, V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, Yu. B. Samsonenko, A. D. Bouravleuv, J. C. Harmand, and F. Glas, Phys. Status Solidi RRL 3, 112 (2009).CrossRefGoogle Scholar
  18. 18.
    V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand, and P. Werner, Nano Lett. 11, 1247 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    N. V. Sibirev, M. V. Nazarenko, and V. G. Dubrovskii, Tech. Phys. Lett. 38, 221 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    K. A. Dick, Z. Geretovszky, A. Mikkelsen, L. S. Karlsson, E. Lundgren, J.-O. Malm, J. N. Andersen, L. Samuelson, and W. Seifert, Nanotechnology 17, 1344 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    K. A. Dick, K. Deppert, L. S. Karlsson, W. Seifert, L. Reine Wallenberg, and L. Samuelson, Nano Lett. 6, 2842 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    S. Assali, J. Greil, I. Zardo, A. Belabbes, M. W. A. de Moor, S. Koelling, P. M. Koenraad, F. Bechstedt, E. P. A. M. Bakkers, and J. E. M. Haverkort, J. Appl. Phys. 120, 044304 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    P. J. Dean, Prog. Solid State Chem. 8, 1 (1973).CrossRefGoogle Scholar
  24. 24.
    P. J. Dean, Phys. Rev. 157, 655 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Shtrom
    • 1
    • 2
  • N. V. Sibirev
    • 3
    • 4
  • E. V. Ubiivovk
    • 3
    • 5
  • Yu. B. Samsonenko
    • 1
    • 2
  • A. I. Khrebtov
    • 1
  • R. R. Reznik
    • 1
    • 2
    • 5
  • A. D. Bouravleuv
    • 1
    • 2
  • G. E. Cirlin
    • 1
    • 2
    • 5
  1. 1.St. Petersburg Academic UniversityRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  5. 5.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations