Advertisement

Semiconductors

, Volume 52, Issue 1, pp 112–117 | Cite as

Influence of Substrate Misorientation on the Composition and the Structural and Photoluminescence Properties of Epitaxial Layers Grown on GaAs(100)

  • P. V. Seredin
  • A. S. Lenshin
  • A. V. Fedyukin
  • I. N. Arsentyev
  • A. V. Zhabotinsky
  • D. N. Nikolaev
  • H. Leiste
  • M. Rinke
Fabrication, Treatment, and Testing of Materials and Structures
  • 11 Downloads

Abstract

The influence of the degree of misorientation and treatment of a GaAs substrate on the structural and optical characteristics of homoepitaxial GaAs/GaAs(100) structures grown by metal–organic chemicalvapor deposition is studied. From the data obtained by a series of structural and spectroscopic techniques, it is shown that the degree of deviation of the substrate from the exact orientation towards the [110] direction by an angle of up to 4° brings about stepwise growth of the GaAs film in the initial stage and a further increase in the degree of misorienration towards the [110] direction to 10° results in an increase in the number of structural defects in the epitaxial film. At the same time, the samples of homoepitaxial structures grown by metal–organic chemical-vapor deposition on GaAs(100) substrates misoriented by 4° towards the [110] direction possess the highest photoluminescence efficiency; it is ~15% higher than the corresponding quantity for structures grown on precisely oriented GaAs(100) substrates. Preliminary polishing of the GaAs substrate (removal of an oxide layer) also yields the intensification of photoluminescence emission compared to emission in the case of an unpolished substrate of the same type. For samples grown on substrates misoriented by 4°, such an increase in the photoluminescence efficiency is ~30%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Moon, K. Kim, Y. Kim, J. Heo, and J. Lee, Sci. Rep. 6, 30107 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Appl. Surf. Sci. 267, 181 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    P. V. Seredin, A. V. Glotov, V. E. Ternovaya, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 45, 481 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    P. V. Seredin, A. V. Glotov, V. E. Ternovaya, E. P. Domashevskaya, I. N. Arsentyev, L. S. Vavilova, and I. S. Tarasov, Semiconductors 45, 1433 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, J. Phys. B: Condens. Matter 405, 4607 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    R. Boussaha, H. Fitouri, A. Rebey, and B. E. Jani, Appl. Surf. Sci. 291, 40 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    H. Dong, J. Sun, S. Ma, J. Liang, T. Lu, X. Liu, and B. Xu, Nanoscale 8, 6043 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    E. Pelucchi, N. Moret, B. Dwir, D. Y. Oberli, A. Rudra, N. Gogneau, A. Kumar, E. Kapon, E. Levy, and A. Palevski, J. Appl. Phys. 99, 093515 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    E. S. Johnson and G. E. Legg, J. Cryst. Growth 88, 53 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    H.-S. Kim, Y. Kim, M.-S. Kim, and S.-K. Min, J. Cryst. Growth 92, 507 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    K. Fujita, T. Yamamoto, T. Takebe, and T. Watanabe, Jpn. J. Appl. Phys. 32, L978 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    D. H. Rich, K. Rammohan, Y. Tang, and H. T. Lin, J. Vac. Sci. Technol. B 13, 1766 (1995).CrossRefGoogle Scholar
  13. 13.
    M. M. Lira, J. L. Alvarado, M. L. Lípez, and M. A. Vidal, Superficies Vacío, 32 (2000).Google Scholar
  14. 14.
    D. G. Vasil’ev, V. P. Evtikhiev, V. E. Tokranov, I. V. Kudryashov, and V. P. Kochereshko, Phys. Solid State 40, 787 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    K. Mochizuki, S. Goto, H. Kakibayashi, and C. Kusano, Jpn. J. Appl. Phys. 29, L1046 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    P. R. Hageman, J. te Nijenhuis, M. J. Anders, and L. J. Giling, J. Cryst. Growth 170, 270 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    S. Orsila, A. Tukiainen, P. Uusimaa, J. Dekker, T. Leinonen, and M. Pessa, J. Cryst. Growth 227–228, 249 (2001).CrossRefGoogle Scholar
  18. 18.
    R. C. Tu, Y. K. Su, and S. T. Chou, J. Appl. Phys. 84, 6877 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    P. V. Seredin, V. E. Ternovaya, A. V. Glotov, A. S. Len’shin, I. N. Arsent’ev, D. A. Vinokurov, I. S. Tarasov, H. Leiste, and T. Prutskij, Phys. Solid State 55, 2161 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, J. Phys. B: Condens. Matter 405, 2694 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    W. Hayes and R. Loudon, Scattering of Light by Crystals (Wiley, New York, 1978).Google Scholar
  22. 22.
    P. V. Seredin, E. P. Domashevskaya, V. E. Ternovaya, I. N. Arsent’ev, D. A. Vinokurov, I. S. Tarasov, and T. Prutskij, Phys. Solid State 55, 2169 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    A. P. V. Seredin, A. V. Glotov, A. S. Lenshin, I. N. Arsentyev, D. A. Vinokurov, T. Prutskij, H. Leiste, and M. Rinke, Semiconductors 48, 21 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, I. S. Tarasov, and I. A. Zhurbina, Semiconductors 44, 184 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    I. N. Arsent’ev, E. S. Kalevich, S. G. Konnikov, V. M. Lantratov, T. B. Popova, V. K. Tibilov, and V. P. Ulin, Avtometriya, 74 (1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. V. Seredin
    • 1
  • A. S. Lenshin
    • 1
  • A. V. Fedyukin
    • 1
  • I. N. Arsentyev
    • 2
  • A. V. Zhabotinsky
    • 2
  • D. N. Nikolaev
    • 2
  • H. Leiste
    • 3
  • M. Rinke
    • 3
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia
  3. 3.Karlsruhe Nano Micro FacilityEggenstein-LeopoldshafenGermany

Personalised recommendations