Semiconductors

, Volume 52, Issue 1, pp 131–135 | Cite as

On a New Mechanism for the Realization of Ohmic Contacts

Fabrication, Treatment, and Testing of Materials and Structures

Abstract

Analysis of the contact-barrier height taking into account the distribution of surface states along coordinate x perpendicular to the insulator–semiconductor interface is performed for metal–semiconductor contacts with a dielectric gap. It is shown that taking into account the spatial dependence of the density of surface states at rather high semiconductor doping levels leads to a substantial decrease in the barrier height, which promotes the realization of ohmic contacts. It is established that the smaller the metal–semiconductor contact potential difference ϕ ms is, the stronger the effect of barrier-height lowering. If ϕ ms is negative, this effect can lead to potential sign reversal, i.e., to the realization of an enrichment layer in the space-charge region of the semiconductor even at a high density of surface states. This in turn promotes the manifestation of an anomalous dependence of the contact resistivity on temperature; the resistivity increases with an increase in temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, Chichester, 2007).Google Scholar
  2. 2.
    I. M. Lifshits and S. I. Pekar, Usp. Fiz. Nauk 56, 531 (1955).CrossRefGoogle Scholar
  3. 3.
    M. D. Glinchuk and M. F. Deigen, Sov. Phys. Solid State 5, 295 (1963).Google Scholar
  4. 4.
    J. M. Palau and M. Dumas, Thin Solid Films 191, 21 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    V. G. Bozhkov and S. E. Zaitsev, Russ. Phys. J. 48, 1085 (2005).CrossRefGoogle Scholar
  6. 6.
    A. V. Sachenko and O. V. Snitko, Ukr. Fiz. Zh. 12, 578 (1967).Google Scholar
  7. 7.
    W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Si, J. Vac. Sci. Technol. 17, 1019 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    N. F. Mott, Proc. Cambridge Phil. Soc. 3, 568 (1938).ADSCrossRefGoogle Scholar
  9. 9.
    S. E. Swirhun and R. M. Swanson, IEEE Electron Dev. Lett. 7, 155 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Sachenko, A. E. Belyaev, and R. V. Konakova, Semiconductors 50, 761 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    K. Shenai, IEEE Electron Dev. 34 (8), 164 (1987).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Sachenko
    • 1
  • A. E. Belyaev
    • 1
  • R. V. Konakova
    • 1
  1. 1.Lashkaryov Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations