Semiconductors

, Volume 52, Issue 1, pp 44–52 | Cite as

Mobility of the Two-Dimensional Electron Gas in DA-pHEMT Heterostructures with Various δ–n-Layer Profile Widths

  • D. Yu. Protasov
  • A. K. Bakarov
  • A. I. Toropov
  • B. Ya. Ber
  • D. Yu. Kazantsev
  • K. S. Zhuravlev
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • 1 Downloads

Abstract

The effect of the silicon-atom distribution profile in donor δ-layers of AlGaAs/InGaAs/AlGaAs heterostructures with donor–acceptor doping on the mobility of the two-dimensional electron gas is studied. The parameters of the δ-layer profiles are determined using the normal approximation of the spatial distributions of silicon atoms, measured by secondary-ion mass spectroscopy. It is shown that the standard deviation σ of the δ-layer profile can be reduced from 3.4 to 2.5 nm by the proper selection of growth conditions. Measurements of the magnetic-field dependences of the Hall effect and conductivity show that such a decrease in σ allowed an increase in the mobility of the two-dimensional electron gas in heterostructures by 4000 cm2/(V s) at 77 K and 600 cm2/(V s) at 300 K. The mobility calculation taking into account filling of the first two size-quantization subbands shows that an increase in the mobility is well explained by a reduction in the Coulomb scattering at ionized donors due to an increase in the effective thickness of the spacer layer with decreasing σ of the δ-layer profile.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ketterson, M. Moloney, W. T. Masselink, C. K. Peng, J. Klem, R. Fischer, W. Kopp, and H. Morkoc, IEEE Electron Dev. Lett. 6, 628 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    M. Kudo, T. Mishima, T. Tanimoto, and M. Washima, Jpn. J. Appl. Phys. 33, 971 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, Appl. Phys. Lett. 75, 1703 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    H. Toyoshima, T. Niwa, J. Yamazaki, and A. Okamoto, J. Appl. Phys. 75, 3908 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    Y. C. Chen and P. K. Bhattacharya, J. Appt. Phys. 73, 7389 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    B. Jogai, Appl. Phys. Lett. 66, 436 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    K. Inoue, H. Sakaki, J. Yoshino, and Y. Yoshioka, Appl. Phys. Lett. 46, 973 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    A. N. Vinichenko, V. P. Gladkov, N. I. Kargin, M. N. Strikhanov, and I. S. Vasil’evskii, Semiconductors 48, 1619 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    J. Požela, V. Juciene, and K. J. Požela, Semicond. Sci. Technol. 10, 1076 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    V. G. Mokerov, G. B. Galiev, J. Požela, K. Požela, and V. Juciene, Semiconductors 36, 674 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    C. H. Lin, H. Z. Liu, C. K. Chu, H. K. Huang, Y. H. Wang, C. C. Liu, C. H. Chang, C. L. Wu, and C. S. Chang, in Proceedings of the Compound Semiconductor Integrated Circuit Symposium, San-Antonio, TX, Nov. 12–15, 2006, p.165.Google Scholar
  12. 12.
    H. Amasuga, Seiki Goto, T. Shiga, and M. Totsuka, in Proceedings of the IEEE MTT-S International Microwave Symposium, Long Beach, CA, June 11–17, 2005, p.831.Google Scholar
  13. 13.
    D. C. Dumka, Ming-Yih Kao, Edward Beam, Tso-Min Chou, Hua-Quen Tserng, and D. M. Fanning, in Proceedings of the Compound Semiconductor Integrated Circuit Symposium, Monterey, CA, Oct. 3–6, 2010, p.188.Google Scholar
  14. 14.
    V. M. Lukashin, A. B. Pashkovskii, K. S. Zhuravlev, A. I. Toropov, V. G. Lapin, and A. B. Sokolov, Tech. Phys. Lett. 38, 819 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    V. M. Lukashin, A. B. Pashkovskii, K. S. Zhuravlev, A. I. Toropov, V. G. Lapin, E. I. Golant, and A. A. Kapralova, Semiconductors 48, 666 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    D. V. Gulyaev, K. S. Zhuravlev, A. K. Bakarov, A. I. Toropov, D. Yu. Protasov, A. K. Gutakovskii, B. Ya. Ber, and D. Yu. Kazantsev, J. Phys. D: Appl. Phys. 49, 095108 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 235437 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    D. Yu. Protasov and K. S. Zhuravlev, Solid State Electron. 129, 66 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    W. A. Beck and J. R. Anderson, J. Appl. Phys. 62, 541 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    D. Yu. Protasov, A. V. Trifanov, and V. Ya. Kostyuchenko, Eur. Phys. J. Appl. Phys. 62, 30104 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    T. E. Shoup, A Practical Guide to Computer Methods for Engineers (Prentice-Hall, Upper Saddle River, NJ, 1979; Mir, Moscow, 1982).Google Scholar
  22. 22.
    R. Fletcher, E. Zaremba, M. D’Iorio, C. T. Foxon, and J. J. Harris, Phys. Rev. B 41, 10649 (1990).ADSCrossRefGoogle Scholar
  23. 23.
    Software for Semiconductor Nanodevices, www.nextnano. de. Accessed April 25, 2017.Google Scholar
  24. 24.
    E. F. Schubert, L. Pfeiffer, K. W. West, H. S. Luftman, and G. J. Zydzik, Appl. Phys. Lett. 64, 2238 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    E. V. Kuchis, Galvanomagnetic Effects and Methods of their Study (Radio Svyaz’, Moscow, 1990) [in Russian].Google Scholar
  26. 26.
    A. C. Beer, Galvanomagnetic Effects in Semiconductors (Academic, New York, London, 1963).MATHGoogle Scholar
  27. 27.
    P. S. Kireev, Semiconductor Physics (Vyssh. Shkola, Moscow, 1975) [in Russian].Google Scholar
  28. 28.
    G. B. Galiev, I. S. Vasil’evskii, E. A. Klimov, V. G. Mokerov, and A. A. Cherechukin, Semiconductors 40, 1445 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    D. Chattopadhyay, S. K. Sutradhar, and B. R. Nag, J. Phys. C 14, 891 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. Yu. Protasov
    • 1
    • 2
  • A. K. Bakarov
    • 1
    • 3
  • A. I. Toropov
    • 1
    • 3
  • B. Ya. Ber
    • 4
  • D. Yu. Kazantsev
    • 4
  • K. S. Zhuravlev
    • 1
    • 3
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations