Semiconductors

, Volume 52, Issue 1, pp 53–58 | Cite as

Bimodality in Arrays of In0.4Ga0.6As Hybrid Quantum-Confined Heterostructures Grown on GaAs Substrates

  • A. M. Nadtochiy
  • S. A. Mintairov
  • N. A. Kalyuzhnyy
  • S. S. Rouvimov
  • V. N. Nevedomskii
  • M. V. Maximov
  • A. E. Zhukov
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena

Abstract

Hybrid quantum-confined heterostructures grown by metal-organic vapor-phase epitaxy (MOVPE) via the deposition of In0.4Ga0.6As layers with various nominal thicknesses onto vicinal GaAs substrates are studied by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence spectra of these structures show the superposition of two spectral lines, which is indicative of the bimodal distribution of the size and/or shape of light-emitting objects in an array. The dominant spectral line is attributed to the luminescence of hybrid “quantum well–dot” nanostructures in the form of a dense array of relatively small quantum dots (QDs) with weak electron and hole localization. The second, lower intensity line is attributed to luminescence from a less dense array of comparatively larger QDs. Analysis of the behavior of the spectral line intensities at various temperatures showed that the density of larger QDs grows with increasing thickness of the InGaAs layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, Semiconductors 46, 1225 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, A. P. Vasil’ev, E. S. Semenova, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maksimov, et al., Semiconductors 36, 1315 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    N. V. Kryzhanovskaya, I. S. Mukhin, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, A. M. Nadtochiy, M. V. Maximov, A. E. Zhukov, M. M. Kulagina, K. A. Vashanova, Yu. M. Zadiranov, S. I. Troshkov, A. A. Lipovskii, and A. Mintairov, Opt. Express 22, 25782 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimer, and A. Zhukov, Opt. Lett. 32, 793 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Blokhin, A. V. Sakharov, A. M. Nadtochiy, A. S. Payusov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, and N. A. Kaluzhniy, Semiconductors 43, 514 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    N. A. Kalyuzhnyy, S. A. Mintairov, R. A. Salii, A. M. Nadtochiy, A. S. Payusov, P. N. Brunkov, V. N. Nevedomsky, M. Z. Shvarts, A. Martí, V. M. Andreev, and A. Luque, Prog. Photovolt.: Res. Appl. 24, 1261 (2016).CrossRefGoogle Scholar
  7. 7.
    B. Browne, J. Lacey, T. Tibbits, G. Bacchin, T.-C. Wu, J. Q. Liu, X. Chen, V. Rees, J. Tsai, and J.-G. Werthen, AIP Conf. Proc. 1556, 3 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, Chichester, 2012).CrossRefGoogle Scholar
  9. 9.
    P. R. Griffin, J. Barnes, K. W. J. Barnham, G. Haarpainter, M. Mazzler, C. Zanotti-Fregonara, E. Grunbaum, C. Olson, C. Rohr, J. P. R. David, J. S. Roberts, R. Grey, and M. A. Pate, J. Appl. Phys. 80, 5815 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, Nanotechnology 26, 385202 (2015).CrossRefGoogle Scholar
  11. 11.
    S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, IEEE Electron. Lett. 51, 1602 (2015).CrossRefGoogle Scholar
  12. 12.
    A. M. Nadtochiy, S. A. Mintairov, N. A. Kalyuzhnyy, S. S. Rouvimov, Yu. M. Shernyakov, A. S. Payusov, M. V. Maximov, and A. E. Zhukov, Semiconductors 49, 1090 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    S. Liang, H. L. Zhu, and W. Wang, J. Appl. Phys. 100, 103503 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    C. M. Lee, S. H. Choi, J. C. Seo, J. I. Lee, J. Y. Leem, and I. K. Han, J. Korean Phys. Soc. 46, 1615 (2004).Google Scholar
  15. 15.
    Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    G. Saint-Girons and I. Sagnes, J. Appl. Phys. 91, 10115 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Nadtochiy
    • 1
    • 2
    • 3
  • S. A. Mintairov
    • 3
  • N. A. Kalyuzhnyy
    • 3
  • S. S. Rouvimov
    • 4
  • V. N. Nevedomskii
    • 3
  • M. V. Maximov
    • 1
    • 2
    • 3
  • A. E. Zhukov
    • 1
    • 2
  1. 1.St. Petersburg Academic University—Nanotechnology Research and Education CentreRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Solar Dots, Ltd.St. PetersburgRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia
  4. 4.University of Notre Dame, Notre DameIndianaUSA

Personalised recommendations