Skip to main content
Log in

Bimodality in Arrays of In0.4Ga0.6As Hybrid Quantum-Confined Heterostructures Grown on GaAs Substrates

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Hybrid quantum-confined heterostructures grown by metal-organic vapor-phase epitaxy (MOVPE) via the deposition of In0.4Ga0.6As layers with various nominal thicknesses onto vicinal GaAs substrates are studied by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence spectra of these structures show the superposition of two spectral lines, which is indicative of the bimodal distribution of the size and/or shape of light-emitting objects in an array. The dominant spectral line is attributed to the luminescence of hybrid “quantum well–dot” nanostructures in the form of a dense array of relatively small quantum dots (QDs) with weak electron and hole localization. The second, lower intensity line is attributed to luminescence from a less dense array of comparatively larger QDs. Analysis of the behavior of the spectral line intensities at various temperatures showed that the density of larger QDs grows with increasing thickness of the InGaAs layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. E. Zhukov, M. V. Maksimov, and A. R. Kovsh, Semiconductors 46, 1225 (2012).

    Article  ADS  Google Scholar 

  2. S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, A. P. Vasil’ev, E. S. Semenova, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maksimov, et al., Semiconductors 36, 1315 (2002).

    Article  ADS  Google Scholar 

  3. N. V. Kryzhanovskaya, I. S. Mukhin, E. I. Moiseev, I. I. Shostak, A. A. Bogdanov, A. M. Nadtochiy, M. V. Maximov, A. E. Zhukov, M. M. Kulagina, K. A. Vashanova, Yu. M. Zadiranov, S. I. Troshkov, A. A. Lipovskii, and A. Mintairov, Opt. Express 22, 25782 (2014).

    Article  ADS  Google Scholar 

  4. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimer, and A. Zhukov, Opt. Lett. 32, 793 (2007).

    Article  ADS  Google Scholar 

  5. S. A. Blokhin, A. V. Sakharov, A. M. Nadtochiy, A. S. Payusov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, and N. A. Kaluzhniy, Semiconductors 43, 514 (2009).

    Article  ADS  Google Scholar 

  6. N. A. Kalyuzhnyy, S. A. Mintairov, R. A. Salii, A. M. Nadtochiy, A. S. Payusov, P. N. Brunkov, V. N. Nevedomsky, M. Z. Shvarts, A. Martí, V. M. Andreev, and A. Luque, Prog. Photovolt.: Res. Appl. 24, 1261 (2016).

    Article  Google Scholar 

  7. B. Browne, J. Lacey, T. Tibbits, G. Bacchin, T.-C. Wu, J. Q. Liu, X. Chen, V. Rees, J. Tsai, and J.-G. Werthen, AIP Conf. Proc. 1556, 3 (2013).

    Article  ADS  Google Scholar 

  8. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, Chichester, 2012).

    Book  Google Scholar 

  9. P. R. Griffin, J. Barnes, K. W. J. Barnham, G. Haarpainter, M. Mazzler, C. Zanotti-Fregonara, E. Grunbaum, C. Olson, C. Rohr, J. P. R. David, J. S. Roberts, R. Grey, and M. A. Pate, J. Appl. Phys. 80, 5815 (1996).

    Article  ADS  Google Scholar 

  10. S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, Nanotechnology 26, 385202 (2015).

    Article  Google Scholar 

  11. S. A. Mintairov, N. A. Kalyuzhnyy, M. V. Maximov, A. M. Nadtochiy, S. Rouvimov, and A. E. Zhukov, IEEE Electron. Lett. 51, 1602 (2015).

    Article  Google Scholar 

  12. A. M. Nadtochiy, S. A. Mintairov, N. A. Kalyuzhnyy, S. S. Rouvimov, Yu. M. Shernyakov, A. S. Payusov, M. V. Maximov, and A. E. Zhukov, Semiconductors 49, 1090 (2015).

    Article  ADS  Google Scholar 

  13. S. Liang, H. L. Zhu, and W. Wang, J. Appl. Phys. 100, 103503 (2006).

    Article  ADS  Google Scholar 

  14. C. M. Lee, S. H. Choi, J. C. Seo, J. I. Lee, J. Y. Leem, and I. K. Han, J. Korean Phys. Soc. 46, 1615 (2004).

    Google Scholar 

  15. Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001).

    Article  ADS  Google Scholar 

  16. G. Saint-Girons and I. Sagnes, J. Appl. Phys. 91, 10115 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Nadtochiy.

Additional information

Original Russian Text © A.M. Nadtochiy, S.A. Mintairov, N.A. Kalyuzhnyy, S.S. Rouvimov, V.N. Nevedomskii, M.V. Maximov, A.E. Zhukov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 1, pp. 57–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadtochiy, A.M., Mintairov, S.A., Kalyuzhnyy, N.A. et al. Bimodality in Arrays of In0.4Ga0.6As Hybrid Quantum-Confined Heterostructures Grown on GaAs Substrates. Semiconductors 52, 53–58 (2018). https://doi.org/10.1134/S1063782618010153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618010153

Navigation