, Volume 52, Issue 1, pp 64–70 | Cite as

On the Electret Effect in Polymer–Ferroelectric Piezoceramic Composites with Various Values of the Electronegativity of the Polymer Matrix and Piezophase Cations

  • M. A. Kurbanov
  • I. S. Ramazanova
  • Z. A. Dadashev
  • U. V. Yusifova
  • G. Kh. Huseynova
  • K. K. Azizova
  • I. A. Farajzadeh
Amorphous, Vitreous, and Organic Semiconductors


The influence of the electronegativity of phases, which is controlled by composite crystallization under the conditions of the effect of the electric discharge and covalence of piezophase cations, on the formation mechanism of the stable electret effect is determined. The specific features of the formation of the electret effect in composites based on polyolefins (HDPE, PP), fluorine-containing polymers (F42), and ferroelectric piezoelectric ceramics of the family of lead zirconate–titanate (Pb(Zr,Ti)O3) crystallized under conditions of the effect of electric discharge plasma, are revealed. A physical model of electret composites taking into account the role of homocharges and heterocharges formed in a composite by its dispersion with piezoceramic particles of various structures—rhombohedral, tetragonal, and heterogeneous—is proposed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. S. Rez and Yu. M. Poplavko, Dielectrics. Basic Properties and Applications in Electronics (Radio Svyaz’, Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    S. A. Gridnev, Soros. Obrazov. Zh., No. 5, 105 (1997).Google Scholar
  3. 3.
    M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).Google Scholar
  4. 4.
    E. G. Fesenko, A. Ya. Dantsiger, and O. N. Razumovskaya, New Piesoelectrical Materials (Rostov Gos. Univ., Rostov-on-Don, 1983) [in Russian].Google Scholar
  5. 5.
    G. Sessler, Electrets (Springer, Berlin, 1987).CrossRefGoogle Scholar
  6. 6.
    V. A. Gol’dade and L. S. Pinchuk, Electret Plastics: Physics and Material Science (Nauka Tekhnika, Minsk, 1987) [in Russian].Google Scholar
  7. 7.
    G. A. Lushcheikin, Polymer Electets (Khimiya, Moscow, 1984) [in Russian].Google Scholar
  8. 8.
    M. A. Kurbanov, M. K. Kerimov, S. N. Musaeva, and E. A. Kerimov, Polymer Sci., Ser. B 48, 262 (2006).CrossRefGoogle Scholar
  9. 9.
    V. G. Boitsov and D. A. Rychkov, Materialovedenie, No. 12, 46 (2001).Google Scholar
  10. 10.
    L. A. Shcherbachenko, V. S. Borisov, N. T. Maksimova, E. S. Baryshnikov, V. A. Karnakov, S. D. Marchuk, Ya. V. Ezhova, and L. I. Ruzhnikov, Tech. Phys. 54, 1372 (2009).CrossRefGoogle Scholar
  11. 11.
    A. A. Rychkov, A. A. Malygin, S. A. Trifonov, and D. A. Rychkov, Russ. J. Appl. Chem. 77, 276 (2004).CrossRefGoogle Scholar
  12. 12.
    M. A. Kurbanov, I. S. Sultanakhmedova, E. A. Kerimov, Kh. S. Aliev, G. G. Aliev, and G. M. Geidarov, Phys. Solid State 51, 1223 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. A. Gorokhovatskii and G. A. Bordovskii, Thermoactivation Current Spectroscopy of High-Resistivity Semiconductors and Insulators (Nauka, Moscow, 1991) [in Russian].Google Scholar
  14. 14.
    M. A Kurbanov, A. A. Bayramov, N. A. Safarov, I. S. Sultanakhmedova, and S. N. Musaeva, US Patent No. 8187488 B2 (2012).Google Scholar
  15. 15.
    M. F. Galikhanov, A. A. Kozlov, E. A. Karabaeva, R. Ya. Deberdeev, D. E. Temnov, E. I. Bobritskaya, and I. V. Krishtal’, Khim. Khim. Tekhnol. 52 (4), 91 (2009).Google Scholar
  16. 16.
    M. K. Kerimov, M. A. Kurbanov, A. A. Bayramov, and A. I. Mamedov, in Nanocomposites and Polymers with Analytical Methods, Ed. by J. Cuppoletti (InTech Open Access, Rijeka, 2011), Vol. 3, p.375.Google Scholar
  17. 17.
    R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials (Akademiya, Moscow, 2005) [in Russian].Google Scholar
  18. 18.
    A. Yu. Bedanokov, V. A. Borisov, A. K. Mikitaev, T. O. Kerefov, E. M. Davydov, M. A. Mikitaev, T. O. Kerefov, E. M. Davydov, and M. A. Mikitaev, Plast. Massy, No. 4, 48 (2007).Google Scholar
  19. 19.
    E. I. Grigor’ev, S. N. Zav’yalov, and S. N. Chvalun, Tech. Phys. Lett. 30, 322 (2004).CrossRefGoogle Scholar
  20. 20.
    A. I. Gusev, Nanomaterials, Nanostructures and Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  21. 21.
    S. A. Ozerin, E. V. Kireeva, E. I. Grigor’ev, E. N. Gerasimov, and S. N. Chvalun, Polymer Sci., Ser. A 49, 809 (2007).CrossRefGoogle Scholar
  22. 22.
    A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Nanoparticles of Metals in Polymers (Khimiya, Moscow, 2000) [in Russian]Google Scholar
  23. 23.
    V. G. Shevchenko, Principles of the Physics of Polymer Composition Materials, The School-Book (Mosk. Gos. Univ., Moscow, 2010) [in Russian].Google Scholar
  24. 24.
    M. A. Kurbanov, Extended Abstract of Cand. Sci. Dissertation (Baku, 1974).Google Scholar
  25. 25.
    M. Shchelev, Optoelektron. Prib. Foton. 45 (3), 86 (2014).Google Scholar
  26. 26.
    F. A. Aliev and V. B. Larin, Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms (Gordon and Breach Science, Amsterdam, 1998).MATHGoogle Scholar
  27. 27.
    F. A. Aliev, N. A. Aliev, K. G. Hasanov, A. P. Guliev, A. K. Turarov, and G. V. Isaeva, J. Pure Appl. Math. 6, 158 (2015).Google Scholar
  28. 28.
    F. A. Aliev and V. B. Larin, Appl. Comput. Math. 13, 46 (2014).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Kurbanov
    • 1
  • I. S. Ramazanova
    • 1
  • Z. A. Dadashev
    • 1
  • U. V. Yusifova
    • 1
  • G. Kh. Huseynova
    • 1
  • K. K. Azizova
    • 1
  • I. A. Farajzadeh
    • 1
  1. 1.Institute of PhysicsNational Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations