Skip to main content
Log in

On the Electret Effect in Polymer–Ferroelectric Piezoceramic Composites with Various Values of the Electronegativity of the Polymer Matrix and Piezophase Cations

  • Amorphous, Vitreous, and Organic Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The influence of the electronegativity of phases, which is controlled by composite crystallization under the conditions of the effect of the electric discharge and covalence of piezophase cations, on the formation mechanism of the stable electret effect is determined. The specific features of the formation of the electret effect in composites based on polyolefins (HDPE, PP), fluorine-containing polymers (F42), and ferroelectric piezoelectric ceramics of the family of lead zirconate–titanate (Pb(Zr,Ti)O3) crystallized under conditions of the effect of electric discharge plasma, are revealed. A physical model of electret composites taking into account the role of homocharges and heterocharges formed in a composite by its dispersion with piezoceramic particles of various structures—rhombohedral, tetragonal, and heterogeneous—is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Rez and Yu. M. Poplavko, Dielectrics. Basic Properties and Applications in Electronics (Radio Svyaz’, Moscow, 1989) [in Russian].

    Google Scholar 

  2. S. A. Gridnev, Soros. Obrazov. Zh., No. 5, 105 (1997).

    Google Scholar 

  3. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).

    Google Scholar 

  4. E. G. Fesenko, A. Ya. Dantsiger, and O. N. Razumovskaya, New Piesoelectrical Materials (Rostov Gos. Univ., Rostov-on-Don, 1983) [in Russian].

    Google Scholar 

  5. G. Sessler, Electrets (Springer, Berlin, 1987).

    Book  Google Scholar 

  6. V. A. Gol’dade and L. S. Pinchuk, Electret Plastics: Physics and Material Science (Nauka Tekhnika, Minsk, 1987) [in Russian].

    Google Scholar 

  7. G. A. Lushcheikin, Polymer Electets (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  8. M. A. Kurbanov, M. K. Kerimov, S. N. Musaeva, and E. A. Kerimov, Polymer Sci., Ser. B 48, 262 (2006).

    Article  Google Scholar 

  9. V. G. Boitsov and D. A. Rychkov, Materialovedenie, No. 12, 46 (2001).

    Google Scholar 

  10. L. A. Shcherbachenko, V. S. Borisov, N. T. Maksimova, E. S. Baryshnikov, V. A. Karnakov, S. D. Marchuk, Ya. V. Ezhova, and L. I. Ruzhnikov, Tech. Phys. 54, 1372 (2009).

    Article  Google Scholar 

  11. A. A. Rychkov, A. A. Malygin, S. A. Trifonov, and D. A. Rychkov, Russ. J. Appl. Chem. 77, 276 (2004).

    Article  Google Scholar 

  12. M. A. Kurbanov, I. S. Sultanakhmedova, E. A. Kerimov, Kh. S. Aliev, G. G. Aliev, and G. M. Geidarov, Phys. Solid State 51, 1223 (2009).

    Article  ADS  Google Scholar 

  13. Yu. A. Gorokhovatskii and G. A. Bordovskii, Thermoactivation Current Spectroscopy of High-Resistivity Semiconductors and Insulators (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  14. M. A Kurbanov, A. A. Bayramov, N. A. Safarov, I. S. Sultanakhmedova, and S. N. Musaeva, US Patent No. 8187488 B2 (2012).

  15. M. F. Galikhanov, A. A. Kozlov, E. A. Karabaeva, R. Ya. Deberdeev, D. E. Temnov, E. I. Bobritskaya, and I. V. Krishtal’, Khim. Khim. Tekhnol. 52 (4), 91 (2009).

    Google Scholar 

  16. M. K. Kerimov, M. A. Kurbanov, A. A. Bayramov, and A. I. Mamedov, in Nanocomposites and Polymers with Analytical Methods, Ed. by J. Cuppoletti (InTech Open Access, Rijeka, 2011), Vol. 3, p.375.

    Google Scholar 

  17. R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials (Akademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  18. A. Yu. Bedanokov, V. A. Borisov, A. K. Mikitaev, T. O. Kerefov, E. M. Davydov, M. A. Mikitaev, T. O. Kerefov, E. M. Davydov, and M. A. Mikitaev, Plast. Massy, No. 4, 48 (2007).

    Google Scholar 

  19. E. I. Grigor’ev, S. N. Zav’yalov, and S. N. Chvalun, Tech. Phys. Lett. 30, 322 (2004).

    Article  Google Scholar 

  20. A. I. Gusev, Nanomaterials, Nanostructures and Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  21. S. A. Ozerin, E. V. Kireeva, E. I. Grigor’ev, E. N. Gerasimov, and S. N. Chvalun, Polymer Sci., Ser. A 49, 809 (2007).

    Article  Google Scholar 

  22. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Nanoparticles of Metals in Polymers (Khimiya, Moscow, 2000) [in Russian]

    Google Scholar 

  23. V. G. Shevchenko, Principles of the Physics of Polymer Composition Materials, The School-Book (Mosk. Gos. Univ., Moscow, 2010) [in Russian].

    Google Scholar 

  24. M. A. Kurbanov, Extended Abstract of Cand. Sci. Dissertation (Baku, 1974).

    Google Scholar 

  25. M. Shchelev, Optoelektron. Prib. Foton. 45 (3), 86 (2014).

    Google Scholar 

  26. F. A. Aliev and V. B. Larin, Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms (Gordon and Breach Science, Amsterdam, 1998).

    MATH  Google Scholar 

  27. F. A. Aliev, N. A. Aliev, K. G. Hasanov, A. P. Guliev, A. K. Turarov, and G. V. Isaeva, J. Pure Appl. Math. 6, 158 (2015).

    Google Scholar 

  28. F. A. Aliev and V. B. Larin, Appl. Comput. Math. 13, 46 (2014).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kurbanov.

Additional information

Original Russian Text © M.A. Kurbanov, I.S. Ramazanova, Z.A. Dadashev, U.V. Yusifova, G.Kh. Huseynova, K.K. Azizova, I.A. Farajzadeh, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 1, pp. 68–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbanov, M.A., Ramazanova, I.S., Dadashev, Z.A. et al. On the Electret Effect in Polymer–Ferroelectric Piezoceramic Composites with Various Values of the Electronegativity of the Polymer Matrix and Piezophase Cations. Semiconductors 52, 64–70 (2018). https://doi.org/10.1134/S1063782618010128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618010128

Navigation