Skip to main content
Log in

Electron Effective Mass and g Factor in Wide HgTe Quantum Wells

  • XXI International Symposium “Nanophysics And Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The magnetic-field (0 T < B < 9 T) dependence of the longitudinal and Hall resistances at fixed temperatures (2 K < T < 50 K) for the HgCdTe/HgTe/HgCdTe system with a HgTe quantum well 20.3 nm in width are measured. The activation analysis of the magnetoresistance curves is used as a tool for identifying the mobility gaps between neighboring Landau levels. The activation-energy values obtained from the temperature dependences of the longitudinal resistance in the plateau regions of the quantum Hall effect with the filling factors ν = 1, 2, 3 make it possible to estimate the effective mass and the g factor of electrons in the system under study. Indications concerning the possibility of large values of the g factor (≅ 80) are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).

    Article  ADS  Google Scholar 

  2. S. S. Krishtopenko, I. Yahniuk, D. B. But, V. I. Gavrilenko, W. Knap, and F. Teppe, Phys. Rev. B 94, 245402 (2016).

    Article  ADS  Google Scholar 

  3. M. G. Gavrilov and T. V. Kukushkin, JETP Lett. 43, 103 (1986).

    ADS  Google Scholar 

  4. D. Weiss, E. Stahl, G. Weiman, K. Ploog, and K. von Klitziug, Surf. Sci. 170, 285 (1986).

    Article  ADS  Google Scholar 

  5. H. P. Wei, A. M. Chang, D. C. Tsui, and M. Rozeghi, Phys. Rev. B 32, 7016 (1985).

    Article  ADS  Google Scholar 

  6. Yu. G. Arapov, G. I. Harus, V. N. Neverov, N. G. Shelushinina, M. V. Yakunin, G. A. Alshanskii, and O. A. Kuznetsov, Nanotechnology 11, 351 (2000).

    Article  ADS  Google Scholar 

  7. Yu. G. Arapov, G. I. Harus, V. N. Neverov, N. G. Shelushinina, M. V. Yakunin, and O. A. Kuznetsov, J. Exp. Theor. Phys. 96, 118 (2003).

    Article  ADS  Google Scholar 

  8. D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretskii, S. Weisha[umlaut]upl, Y. Krupko, and J.-C. Portal, Appl. Phys. Lett. 105, 132102 (2014).

    Article  ADS  Google Scholar 

  9. T. Khouri, M. Bendias, P. Leubner, C. Brüne, H. Buhmann, L. W. Molenkamp, U. Zeitler, N. E. Hussey, and S. Wiedmann, Phys. Rev. B 93, 125308 (2016).

    Article  ADS  Google Scholar 

  10. Y. G. Arapov, S. V. Gudina, V. N. Neverov, S. M. Podgornykh, M. R. Popov, G. I. Harus, N. G. Shelushinina, M. V. Yakunin, N. N. Mikhailov, and S. A. Dvoretsky, Semiconductors 49, 1593 (2015).

    Google Scholar 

  11. Yu. G. Arapov, S. V. Gudina, V. N. Neverov, S.M. Podgornykh, M. R. Popov, N. G. Shelushinina, G. I. Harus, M. V. Yakunin, S. A. Dvoretsky, and N. N. Mikhailov, J. Low Temp. Phys. 185, 665 (2016).

    Article  ADS  Google Scholar 

  12. M. Konig, H. Buhmann, L. Molenkamp, and T. Hughes, J. Phys. Soc. Jpn. 77, 031007 (2008).

    Article  ADS  Google Scholar 

  13. M. I. D’yakonov and A. V. Khaetskii, Sov. Phys. JETP 55, 917 (1982)

    Google Scholar 

  14. L. G. Gerchikov and A. Subashiev, Phys. Status Solidi B 160, 443 (1990).

    Article  ADS  Google Scholar 

  15. Z. D. Kvon, E. B. Olshanetsky, E. G. Novik, D. A. Kozlov, N. N. Mikhailov, I. O. Parm, and S. A. Dvoretsky, Phys. Rev. B 83, 193304 (2011).

    Article  ADS  Google Scholar 

  16. E. B. Olshanetsky, S. Sassine, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, J. C. Portal, and A. L. Aseev, JETP Lett. 84, 565 (2006)

    Article  ADS  Google Scholar 

  17. Z. D. Kvon, E. B. Ol’shanetskii, N. N. Mikhailov, and D. A. Kozlov, Low Temp. Phys. 35, 6 (2009).

    Article  ADS  Google Scholar 

  18. M. V. Yakunin, S. M. Podgornykh, N. N. Mikhailov, and S. A. Dvoretsky, Physica E 42, 948 (2010).

    Article  ADS  Google Scholar 

  19. E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C. R. Becker, G. Landwehr, H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 72, 035321 (2005).

    Article  ADS  Google Scholar 

  20. M. S. Zholudev, A. V. Ikonnikov, F. Teppe, M. Orlita, K. V. Maremyanin, K. E. Spirin, V. I. Gavrilenko, W. Knap, S. A. Dvoretskiy, and N. N. Mihailov, Nanoscale Res. Lett. 7, 534 (2012).

    Article  ADS  Google Scholar 

  21. Yu. G. Arapov, N. A. Gorodilov, M. V. Yakunin, V. N. Neverov, A. V. Germanenko, and G. M. Min’kov, JETP Lett. 59, 268 (1994).

    ADS  Google Scholar 

  22. Y. Guldner, C. Rigaux, M. Grynberg, and A. Mycielski, Phys. Rev. B 8, 3875 (1973).

    Article  ADS  Google Scholar 

  23. C. R. Pidgeon and R. N. Brown, Phys. Rev. 146, 515 (1966).

    Article  ADS  Google Scholar 

  24. S. S. Krishtopenko, W. Knap, and F. Teppe, Sci. Rep. 6, 30755 (2016).

    Article  ADS  Google Scholar 

  25. R. W. Martin, R. J. Warburton, R. G. Nicolas, G. J. Rees, S. K. Haywood, N. J. Mason, R. G. Walker, M. Enemy, and L. K. Howard, in Proceedings of the 20th International Conference on Physics of Semiconductors, Thessaloniki, 1990, p.909.

    Google Scholar 

  26. N. A. Gorodilov, O. A. Kuznetsov, L. K. Orlov, R. A. Rubtsova, A. L. Chernov, N. G. Shelushinina, and G. L. Shtrapenin, JETP Lett. 56, 394 (1992).

    ADS  Google Scholar 

  27. Yu. G. Arapov, O. A. Kuznetsov, V. N. Neverov, G. I. Kharus, N. G. Shelushinina, and M. V. Yakunin, Semiconductors 36, 519 (2002).

    Article  ADS  Google Scholar 

  28. T. Wimbauer, K. Oettinger, A. L. Efros, B. K. Meyer, and H. Brugger, Phys. Rev. B 50, 8889 (1994).

    Article  ADS  Google Scholar 

  29. M. A. Semina and R. A. Suris, Semiconductors 49, 797 (2015).

    Article  ADS  Google Scholar 

  30. M. Schultz, U. Merkt, A. Sonntag, U. Rössler, R. Winkler, T. Colin, P. Helgesen, T. Skauli, and S. Løvold, Phys. Rev. B 57, 14772 (1998).

    Article  ADS  Google Scholar 

  31. B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).

    Article  ADS  Google Scholar 

  32. A. Pfeuffer-Jeschke, F. Goschenhofer, S. J. Cheng, V. Latussek, J. Gerschütz, C. R. Becker, R. R. Gerhardts, and G. Landwehr, Physica B 256–258, 486 (1998).

    Article  Google Scholar 

  33. L. S. Bovkun, S. S. Krishtopenko, M. S. Zholudev, A. V. Ikonnikov, K. E. Spirin, S. A. Dvoretsky, N. N. Mikhailov, F. Teppe, W. Knap, and V. I. Gavrilenko, Semiconductors 49, 1627 (2015).

    Article  ADS  Google Scholar 

  34. X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, Phys. Rev. B 63, 245305 (2001).

    Article  ADS  Google Scholar 

  35. Z.-D. Kvon, S. N. Danilov, N. N. Mikhailov, S. Dvoretsky, W. Prettl, and S. Ganichev, condmat/0708.2175.

  36. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gudina.

Additional information

Original Russian Text © S.V. Gudina, V.N. Neverov, E.V. Ilchenko, A.S. Bogolubskii, G.I. Harus, N.G. Shelushinina, S.M. Podgornykh, M.V. Yakunin, N.N. Mikhailov, S.A. Dvoretsky, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 1, pp. 16–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudina, S.V., Neverov, V.N., Ilchenko, E.V. et al. Electron Effective Mass and g Factor in Wide HgTe Quantum Wells. Semiconductors 52, 12–18 (2018). https://doi.org/10.1134/S1063782618010098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618010098

Navigation