, Volume 52, Issue 1, pp 12–18 | Cite as

Electron Effective Mass and g Factor in Wide HgTe Quantum Wells

  • S. V. Gudina
  • V. N. Neverov
  • E. V. Ilchenko
  • A. S. Bogolubskii
  • G. I. Harus
  • N. G. Shelushinina
  • S. M. Podgornykh
  • M. V. Yakunin
  • N. N. Mikhailov
  • S. A. Dvoretsky
XXI International Symposium “Nanophysics And Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017


The magnetic-field (0 T < B < 9 T) dependence of the longitudinal and Hall resistances at fixed temperatures (2 K < T < 50 K) for the HgCdTe/HgTe/HgCdTe system with a HgTe quantum well 20.3 nm in width are measured. The activation analysis of the magnetoresistance curves is used as a tool for identifying the mobility gaps between neighboring Landau levels. The activation-energy values obtained from the temperature dependences of the longitudinal resistance in the plateau regions of the quantum Hall effect with the filling factors ν = 1, 2, 3 make it possible to estimate the effective mass and the g factor of electrons in the system under study. Indications concerning the possibility of large values of the g factor (≅ 80) are obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    S. S. Krishtopenko, I. Yahniuk, D. B. But, V. I. Gavrilenko, W. Knap, and F. Teppe, Phys. Rev. B 94, 245402 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    M. G. Gavrilov and T. V. Kukushkin, JETP Lett. 43, 103 (1986).ADSGoogle Scholar
  4. 4.
    D. Weiss, E. Stahl, G. Weiman, K. Ploog, and K. von Klitziug, Surf. Sci. 170, 285 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    H. P. Wei, A. M. Chang, D. C. Tsui, and M. Rozeghi, Phys. Rev. B 32, 7016 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. G. Arapov, G. I. Harus, V. N. Neverov, N. G. Shelushinina, M. V. Yakunin, G. A. Alshanskii, and O. A. Kuznetsov, Nanotechnology 11, 351 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. G. Arapov, G. I. Harus, V. N. Neverov, N. G. Shelushinina, M. V. Yakunin, and O. A. Kuznetsov, J. Exp. Theor. Phys. 96, 118 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretskii, S. Weisha[umlaut]upl, Y. Krupko, and J.-C. Portal, Appl. Phys. Lett. 105, 132102 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    T. Khouri, M. Bendias, P. Leubner, C. Brüne, H. Buhmann, L. W. Molenkamp, U. Zeitler, N. E. Hussey, and S. Wiedmann, Phys. Rev. B 93, 125308 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Y. G. Arapov, S. V. Gudina, V. N. Neverov, S. M. Podgornykh, M. R. Popov, G. I. Harus, N. G. Shelushinina, M. V. Yakunin, N. N. Mikhailov, and S. A. Dvoretsky, Semiconductors 49, 1593 (2015).Google Scholar
  11. 11.
    Yu. G. Arapov, S. V. Gudina, V. N. Neverov, S.M. Podgornykh, M. R. Popov, N. G. Shelushinina, G. I. Harus, M. V. Yakunin, S. A. Dvoretsky, and N. N. Mikhailov, J. Low Temp. Phys. 185, 665 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    M. Konig, H. Buhmann, L. Molenkamp, and T. Hughes, J. Phys. Soc. Jpn. 77, 031007 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    M. I. D’yakonov and A. V. Khaetskii, Sov. Phys. JETP 55, 917 (1982)Google Scholar
  14. 13a.
    L. G. Gerchikov and A. Subashiev, Phys. Status Solidi B 160, 443 (1990).ADSCrossRefGoogle Scholar
  15. 14.
    Z. D. Kvon, E. B. Olshanetsky, E. G. Novik, D. A. Kozlov, N. N. Mikhailov, I. O. Parm, and S. A. Dvoretsky, Phys. Rev. B 83, 193304 (2011).ADSCrossRefGoogle Scholar
  16. 15.
    E. B. Olshanetsky, S. Sassine, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, J. C. Portal, and A. L. Aseev, JETP Lett. 84, 565 (2006)ADSCrossRefGoogle Scholar
  17. 15a.
    Z. D. Kvon, E. B. Ol’shanetskii, N. N. Mikhailov, and D. A. Kozlov, Low Temp. Phys. 35, 6 (2009).ADSCrossRefGoogle Scholar
  18. 16.
    M. V. Yakunin, S. M. Podgornykh, N. N. Mikhailov, and S. A. Dvoretsky, Physica E 42, 948 (2010).ADSCrossRefGoogle Scholar
  19. 17.
    E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C. R. Becker, G. Landwehr, H. Buhmann, and L. W. Molenkamp, Phys. Rev. B 72, 035321 (2005).ADSCrossRefGoogle Scholar
  20. 18.
    M. S. Zholudev, A. V. Ikonnikov, F. Teppe, M. Orlita, K. V. Maremyanin, K. E. Spirin, V. I. Gavrilenko, W. Knap, S. A. Dvoretskiy, and N. N. Mihailov, Nanoscale Res. Lett. 7, 534 (2012).ADSCrossRefGoogle Scholar
  21. 19.
    Yu. G. Arapov, N. A. Gorodilov, M. V. Yakunin, V. N. Neverov, A. V. Germanenko, and G. M. Min’kov, JETP Lett. 59, 268 (1994).ADSGoogle Scholar
  22. 20.
    Y. Guldner, C. Rigaux, M. Grynberg, and A. Mycielski, Phys. Rev. B 8, 3875 (1973).ADSCrossRefGoogle Scholar
  23. 21.
    C. R. Pidgeon and R. N. Brown, Phys. Rev. 146, 515 (1966).ADSCrossRefGoogle Scholar
  24. 22.
    S. S. Krishtopenko, W. Knap, and F. Teppe, Sci. Rep. 6, 30755 (2016).ADSCrossRefGoogle Scholar
  25. 23.
    R. W. Martin, R. J. Warburton, R. G. Nicolas, G. J. Rees, S. K. Haywood, N. J. Mason, R. G. Walker, M. Enemy, and L. K. Howard, in Proceedings of the 20th International Conference on Physics of Semiconductors, Thessaloniki, 1990, p.909.Google Scholar
  26. 24.
    N. A. Gorodilov, O. A. Kuznetsov, L. K. Orlov, R. A. Rubtsova, A. L. Chernov, N. G. Shelushinina, and G. L. Shtrapenin, JETP Lett. 56, 394 (1992).ADSGoogle Scholar
  27. 25.
    Yu. G. Arapov, O. A. Kuznetsov, V. N. Neverov, G. I. Kharus, N. G. Shelushinina, and M. V. Yakunin, Semiconductors 36, 519 (2002).ADSCrossRefGoogle Scholar
  28. 26.
    T. Wimbauer, K. Oettinger, A. L. Efros, B. K. Meyer, and H. Brugger, Phys. Rev. B 50, 8889 (1994).ADSCrossRefGoogle Scholar
  29. 27.
    M. A. Semina and R. A. Suris, Semiconductors 49, 797 (2015).ADSCrossRefGoogle Scholar
  30. 28.
    M. Schultz, U. Merkt, A. Sonntag, U. Rössler, R. Winkler, T. Colin, P. Helgesen, T. Skauli, and S. Løvold, Phys. Rev. B 57, 14772 (1998).ADSCrossRefGoogle Scholar
  31. 29.
    B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).ADSCrossRefGoogle Scholar
  32. 30.
    A. Pfeuffer-Jeschke, F. Goschenhofer, S. J. Cheng, V. Latussek, J. Gerschütz, C. R. Becker, R. R. Gerhardts, and G. Landwehr, Physica B 256–258, 486 (1998).CrossRefGoogle Scholar
  33. 31.
    L. S. Bovkun, S. S. Krishtopenko, M. S. Zholudev, A. V. Ikonnikov, K. E. Spirin, S. A. Dvoretsky, N. N. Mikhailov, F. Teppe, W. Knap, and V. I. Gavrilenko, Semiconductors 49, 1627 (2015).ADSCrossRefGoogle Scholar
  34. 32.
    X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, Phys. Rev. B 63, 245305 (2001).ADSCrossRefGoogle Scholar
  35. 33.
    Z.-D. Kvon, S. N. Danilov, N. N. Mikhailov, S. Dvoretsky, W. Prettl, and S. Ganichev, condmat/0708.2175.Google Scholar
  36. 34.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Gudina
    • 1
  • V. N. Neverov
    • 1
  • E. V. Ilchenko
    • 1
  • A. S. Bogolubskii
    • 1
  • G. I. Harus
    • 1
  • N. G. Shelushinina
    • 1
  • S. M. Podgornykh
    • 1
    • 2
  • M. V. Yakunin
    • 1
    • 2
  • N. N. Mikhailov
    • 3
    • 4
  • S. A. Dvoretsky
    • 3
    • 5
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia
  3. 3.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.National Research Tomsk State UniversityTomskRussia

Personalised recommendations