Advertisement

Semiconductors

, Volume 52, Issue 1, pp 93–99 | Cite as

Emission-Line Width and α-Factor of 850-nm Single-Mode Vertical-Cavity Surface-Emitting Lasers Based on InGaAs/AlGaAs Quantum Wells

  • S. A. Blokhin
  • M. A. Bobrov
  • A. A. Blokhin
  • A. G. Kuzmenkov
  • A. P. Vasil’ev
  • Yu. M. Zadiranov
  • E. A. Evropeytsev
  • A. V. Sakharov
  • N. N. Ledentsov
  • L. Ya. Karachinsky
  • A. M. Ospennikov
  • N. A. Maleev
  • V. M. Ustinov
Physics of Semiconductor Devices
  • 22 Downloads

Abstract

The emission-line width for 850-nm single-mode vertical-cavity surface-emitting lasers based on InGaAs/AlGaAs quantum wells is studied. The width of the emission line for a laser with a 2-μm oxide current aperture attains it minimum (~110 MHz) at an output power of 0.8 mW. As the optical output power is further increased, anomalous broadening of the emission line is observed; this is apparently caused by an increase in the α-factor as a result of a decrease in the differential gain in the active region under conditions of increased concentration of charge carriers and of high internal optical losses in the microcavity. The α-factor is estimated using two independent methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013).CrossRefGoogle Scholar
  2. 2.
    P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, Proc. SPIE 9001, 900103 (2014).CrossRefGoogle Scholar
  3. 3.
    E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, Electron. Lett. 51, 1096 (2015).CrossRefGoogle Scholar
  4. 4.
    P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah. J. Kitching, and L.-A. Liew, Appl. Phys. Lett. 90, 081102 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    M. Prouty and A. Miniature, Wide Band Atomic Magnetometer, SERDP Project MR-1568 (Geometrics Inc., 2011).Google Scholar
  6. 6.
    A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, Proc. SPIE 6908, 69080I (2008).ADSCrossRefGoogle Scholar
  7. 7.
    L. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, Appl. Phys. Lett. 85, 1460 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    D. K. Serkland, K. M. Geib, G. M. Peake, R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, and M. Prouty, Proc. SPIE 6484, 648406 (2007).CrossRefGoogle Scholar
  9. 9.
    D. K. Serkland, G. A. Keeler, K. M. Geib, and G. M. Peake, Proc. SPIE 7229, 722907 (2009).CrossRefGoogle Scholar
  10. 10.
    S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, E. Haglund, A. Larsson, and A. Joel, IEEE J. Quantum Electron. 46, 506 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    M. A. Bobrov, S. A. Blokhin, N. A. Maleev, A. G. Kuzmenkov, A. A. Blokhin, Yu. M. Zadiranov, S. I. Troshkov, N. N. Ledentsov, and V. M. Ustinov, J. Phys.: Conf. Ser. 643, 012044 (2015).Google Scholar
  12. 12.
    K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, IEEE J. Sel. Top. Quant. Electron. 3, 916 (1997).CrossRefGoogle Scholar
  13. 13.
    M. P. van Exter, A. K. Jansen van Doorn, and J. P. Woerdman, Phys. Rev. A 56, 845 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    F. Monti di Sopra, M. Brunner, and R. Hövel, Photon. Technol. Lett. 14, 1034 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    A. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1940 (1958).ADSCrossRefGoogle Scholar
  16. 16.
    C. H. Henry, IEEE J. Quant. Electron. 18, 259 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, 1991).Google Scholar
  18. 18.
    N. N. Ledentsov, J. A. Lott, J.-R. Kropp, V. A. Shchukin, D. Bimberg, P. Moser, G. Fiol, A. S. Payusov, D. Molin, G. Kuyt, A. Amezcua, L. Y. Karachinskiy, S. A. Blokhin, I. I. Novikov, N. A. Maleev, C. Caspar, and R. Freund, Proc. SPIE 8276, 82760K (2012).CrossRefGoogle Scholar
  19. 19.
    D. Kuksenkov, S. Feld, C. Wilmsen, H. Temkin, S. Swirhun, and R. Leibenguth, Appl. Phys. Lett. 66, 277 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    L. A. Coldren, S. W. Corzine, and M. L. Mašanovic, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 2012).CrossRefGoogle Scholar
  21. 21.
    G. M. Yang, M. H. Mac Dugal, V. Pudikov, and P. D. Dapkus, Photon. Technol. Lett. 7, 1228 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, Photon. Technol. Lett. 7, 736 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    A. Bacou, A. Rissons, and J.-C. Mollier, Proc. SPIE 6908, 69080F (2008).ADSCrossRefGoogle Scholar
  24. 24.
    KU. Krüger and K. Petermann, IEEE J. Quant. Electron. 24, 2355 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    H. Halbritter, R. Shau, F. Riemenschneider, B. Kögel, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, M.-C. Amann, and P. Meissner, Electron. Lett. 40, 1266 (2004).CrossRefGoogle Scholar
  26. 26.
    K. Kishino, S. Aoki, and Y. Suematsu, J. Quant. Electron. 18, 343 (1982).ADSCrossRefGoogle Scholar
  27. 27.
    K. Stubkjaer, Y. Suematsu, M. Asada, S. Arai, and A. R. Adams, Electron. Lett. 16, 895 (1980).CrossRefGoogle Scholar
  28. 28.
    M. H. Moloney, J. Hegarty, L. Buydens, P. Demeester, R. Grey, and J. Woodhead, Appl. Phys. Lett. 62, 3327 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    A. P. Ongstad, D. J. Gallant, and G. C. Dente, Appl. Phys. Lett. 66, 2730 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    M. Usami, H. Sakata, and Y. Matsushima, in Proceedings of the 19th International Symposium on Gallium Arsenide and Related Compounds, 1992, p.803.Google Scholar
  31. 31.
    C. H. Wu, F. Tan, M. Feng, and N. Holonyak, Jr., Appl. Phys. Lett. 97, 091103 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Blokhin
    • 1
  • M. A. Bobrov
    • 1
  • A. A. Blokhin
    • 1
  • A. G. Kuzmenkov
    • 1
    • 2
  • A. P. Vasil’ev
    • 1
    • 2
  • Yu. M. Zadiranov
    • 1
  • E. A. Evropeytsev
    • 1
  • A. V. Sakharov
    • 1
  • N. N. Ledentsov
    • 3
  • L. Ya. Karachinsky
    • 1
    • 4
  • A. M. Ospennikov
    • 5
  • N. A. Maleev
    • 1
  • V. M. Ustinov
    • 1
    • 2
    • 6
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Submicron Heterostructures for Microelectronics, Research and Engineering CenterRussian Academy of SciencesSt. PetersburgRussia
  3. 3.VI Systems GmbHBerlinGermany
  4. 4.Connector Optics LLCSt. PetersburgRussia
  5. 5.Russia Institute of Radionavigation and Time RIRTSt. PetersburgRussia
  6. 6.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations