Advertisement

Semiconductors

, Volume 52, Issue 1, pp 71–77 | Cite as

Determination of Thermodynamic Parameters in the Cu1.95Ni0.05S Phase-Transition Regions

  • F. F. Aliev
  • H. A. Hasanov
  • A. G. Rzaeva
  • M. B. Jafarov
  • G. M. Damirov
Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors

Abstract

X-ray diffraction and differential thermal analysis data obtained in the Cu1.95Ni0.05S phase-transition region are analyzed. It is established that the low-temperature rhombic α phase in Cu1.95Ni0.05S transforms to the hexagonal β phase at temperatures of 370–390 K and to the cubic γ phase at temperatures of 740–765 K according to the scheme \(\alpha \to \mathop {\alpha + \beta }\limits_{370 - 390K} \to \mathop {\alpha + \gamma }\limits_{740 - 765K} \to \gamma \). It is determined (using the temperature dependence of differential thermal analysis) that the transition α → β is accompanied by heat absorption while the transition β → γ is accompanied by heat release. It is found that both transitions are allowed and belong to the reconstructive type. Both transitions are found to occur in a fluctuation volume of ~10–20 cm3 at temperature rates of 0.11 and 0.08 K–1. It is demonstrated that the transition α → γ is accompanied by alternation of the structures passing through the intermediate β phase, which is incommensurate with respect to the α and γ phases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. N. Rolov, Smeared Phase Transitions (Zinatne, Riga, 1972) [in Russian].Google Scholar
  2. 2.
    L. Cuangminq, T. Schulmeyer, J. Brotz, A. Klein, and W. Jaedermann, Thin Solid Films 431, 472 (2003).Google Scholar
  3. 3.
    H. T. Evans, Jr., Z. Kristallogr. 150, 299 (1979).CrossRefGoogle Scholar
  4. 4.
    S. Djurle, Acta Chem. Scand. 12, 1415 (1958).CrossRefGoogle Scholar
  5. 5.
    E. H. Roseboom, Econom. Geol. 64, 641 (1966).CrossRefGoogle Scholar
  6. 6.
    N. Alsen, Ged. Forening. Stokholm, Forhand 59, 111 (1931).CrossRefGoogle Scholar
  7. 7.
    H. T. Evans, Jr., Z. Kristallogr. 150, 299 (1979).CrossRefGoogle Scholar
  8. 8.
    B. N. Rolov, Physical Properties of Smeared Phase Transitions (Rizhsk. Gos. Univ., Riga, 1974) [in Russian].Google Scholar
  9. 9.
    B. N. Rolov, Izv. Akad. Nauk Latv. SSR, Ser. Fiz. Tekh. Nauk 4, 33 (1983).Google Scholar
  10. 10.
    K. P. Mamedov, M. F. Gadzhiev, and Z. D. Nurieva, Sov. Phys. Dokl. 21, 606 (1976).ADSGoogle Scholar
  11. 11.
    S. A. Aliev and F. F. Aliev, Semiconductors 42, 394 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    F. F. Aliev, M. B. Dzhafarov, and A. A. Saddinova, Phys. Solid State 52, 2164 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    M. D. Burger, Sov. Phys. Crystallogr. 16, 959 (1971).Google Scholar
  14. 14.
    A. F. Wells, Structural Inorganic Chemistry (Clarendon, Oxford, 1986).Google Scholar
  15. 15.
    N. A. Alieva, K. A. Askerova, S. D. Bagirova, I. Ya. Aliev, Z. I. Suleimanov, F. M. Mustafaev, and A. S. Abbasov, Dokl. Akad. Nauk Azerb. 4 (3–4), 92 (1999).Google Scholar
  16. 16.
    R. A. Abbasov, Rep. Prog. Phys. 45, 587 (1982).CrossRefGoogle Scholar
  17. 17.
    J. P. Jamet, Phase Trans. 11, 335 (1988).CrossRefGoogle Scholar
  18. 18.
    N. Kh. Abrikosov, V. F. Bankina, M. A. Korzhuev, G. K. Domenskii, and O. A. Teplov, Sov. Phys. Solid State 25, 1678 (1983).Google Scholar
  19. 19.
    Yu. Ya. Gurevich, G. V. Reznik, and Yu. I. Kharkats, Sov. Phys. Solid State 20, 961 (1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • F. F. Aliev
    • 1
  • H. A. Hasanov
    • 2
  • A. G. Rzaeva
    • 3
  • M. B. Jafarov
    • 1
  • G. M. Damirov
    • 1
    • 4
  1. 1.Institute of PhysicsNational Academy of Sciences of AzerbaijanBakuAzerbaijan
  2. 2.Heydar Aliev Academy of State Security ServiceBakuAzerbaijan
  3. 3.Azerbaijan State Pedagogical UniversityBakuAzerbaijan
  4. 4.Sumgait State UniversitySumgaitAzerbaijan

Personalised recommendations