Advertisement

Semiconductors

, Volume 52, Issue 1, pp 105–111 | Cite as

Combined Ultramicrotomy and Atomic Force Microscopy Study of the Structure of a Bulk Heterojunction in Polymer Solar Cells

  • A. M. Alekseev
  • A. Al-Afeef
  • G. J. Hedley
  • S. S. Kharintsev
  • A. E. Efimov
  • A. T. Yedrisov
  • N. A. Dyuzhev
  • I. D. W. Samuel
Fabrication, Treatment, and Testing of Materials And Structures
  • 44 Downloads

Abstract

A method for visualization via atomic-force microscopy of the internal structure of photoactive layers of polymer solar cells using an ultramicrotome for photoactive layer cutting is proposed and applied. The method creates an opportunity to take advantage of atomic-force microscopy in structural investigations of the bulk of soft samples. Such advantages of atomic-force microscopy include a high contrast and the ability to measure various surface properties at nanometer resolution. Using the proposed method, samples of the photoactive layer of polymer solar cells based on a mixture of PTB7 polythiophene and PC71BM fullerene derivatives are studied. The disclosed details of the bulk structure of this mixture allow us to draw additional conclusions about the effect of morphology on the efficiency of organic solar cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou, Adv. Mater. 28, 4734 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Zhang, L. Ye, and J. Hou, Adv. Energy Mater. 6, P1502529 (2016).CrossRefGoogle Scholar
  3. 3.
    Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, and Y. Li, Adv. Funct. Mater. 26, 6635 (2016).CrossRefGoogle Scholar
  4. 4.
    C. J. Brabec, N. S. Saricifci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).CrossRefGoogle Scholar
  5. 5.
    X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M.M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, Nat. Mater. 8, 818 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    M. J. M. Wirix, P. H. H. Bomans, M. M. R. M. Hendrix, H. Friedrich, N. A. J. M. Sommerdijk, and G. de With, J. Mater. Chem. A 3, 5031 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Alexeev, J. Loos, and M. M. Koetse, Ultramicroscopy 106, 191 (2006).CrossRefGoogle Scholar
  9. 9.
    D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, Nano Lett. 7, 738 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    J. Loos, J. K. J. van Duren, F. Morrissey, and R. A. J. Janssen, Polymer 43, 7493 (2002).CrossRefGoogle Scholar
  11. 11.
    A. Alekseev, G. J. Hedley, A. Al-Afeef, O. A. Ageev, and I. D. W. Samuel, J. Mater. Chem. A 3, 8706 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Scherer, R. Saive, D. Daume, M. Kröger, and W. Kowalsky, AIP Adv. 3, 092134 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).CrossRefGoogle Scholar
  14. 14.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photon. 6, 591 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    S. J. Lou, J. M. Szarko, T. Xu, L. Yu, T. J. Marks, and L. X. Chen, J. Am. Chem. Soc. 133, 20661 (2011).CrossRefGoogle Scholar
  16. 16.
    M. R. Hammond, R. J. Kline, A. A. Herzing, L. J. Richter, D. S. Germack, H.-W. Ro, C. L. Soles, D. A. Fischer, T. Xu, L. Yu, M. F. Toney, and D. M. DeLongchamp, ACS Nano 5, 8248 (2011).CrossRefGoogle Scholar
  17. 17.
    B. A. Collins, Z. Li, J. R. Tumbleston, E. Gann, C. R. McNeill, and H. Ade, Adv. Energy Mater. 3, 65 (2012).CrossRefGoogle Scholar
  18. 18.
    F. Liu, W. Zhao, J. R. Tumbleston, C. Wang, Y. Gu, D. Wang, A. L. Briseno, H. Ade, and T. P. Russell, Adv. Energy Mater. 4, 1676 (2014).Google Scholar
  19. 19.
    G. J. Hedley, A. J. Ward, A. Alekseev, C. T. Howells, E. R. Martins, L. A. Serrano, G. Cooke, A. Ruseckas, and I. D. W. Samuel, Nat. Commun. 4, 2867 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    J. Loos, E. Sourty, K. Lu, G. de With, and S. van Bavel, Macromolecules 42, 7 (2009).CrossRefGoogle Scholar
  21. 21.
    E. Sourty, S. van Bavel, K. Lu, R. Guerra, G. Bar, and J. Loos, Microsc. Microanal. 15, 251 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, Nat. Photon. 9, 174 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    S. Kharintsev, A. Alekseev, V. Vasilchenko, A. Kharitonov, and M. Salakhov, Opt. Mater. Express 5, 2225 (2015).CrossRefGoogle Scholar
  24. 24.
    S. Kharintsev, A. Alekseev, and J. Loos, Spectrochim. Acta A 171, 139 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    J. P. Cleveland, B. Anczykowski, A. E. Schmid, and V. B. Elings, Appl. Phys. Lett. 72, 2613 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, New York, 2012).CrossRefGoogle Scholar
  27. 27.
    P. Verma, T. Ichimura, T. Yano, Y. Saito, and S. Kawata, Laser Photon. Rev. 4, 548 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Alekseev
    • 1
    • 2
  • A. Al-Afeef
    • 3
  • G. J. Hedley
    • 4
  • S. S. Kharintsev
    • 5
  • A. E. Efimov
    • 6
  • A. T. Yedrisov
    • 1
  • N. A. Dyuzhev
    • 2
  • I. D. W. Samuel
    • 4
  1. 1.National Laboratory AstanaNazarbayev UniversityAstanaKazakhstan
  2. 2.National Research University of Electronic TechnologyMoscowRussia
  3. 3.University of GlasgowGlasgowUK
  4. 4.University of St. AndrewsScotlandUK
  5. 5.Institute of PhysicsKazan Federal UniversityKazanRussia
  6. 6.Federal Research Center for Transplantology and Artificial OrgansMoscowRussia

Personalised recommendations