Skip to main content
Log in

Transformation of electrically active defects as a result of annealing of silicon implanted with high-energy ions

  • Semiconductor Structures, Interfaces, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Deep-level transient spectroscopy is used to study both the concentration profiles of defects introduced into silicon during the implantation of 14-MeV boron ions and the transformation of these defects as a result of subsequent annealing at temperatures in the range from 200 to 800°C. It is ascertained that implantation gives rise to a standard set of vacancy-containing radiation defects (the oxygen-vacancy and phosphorusvacancy complexes and divacancies) and to a center with the level located at E c − 0.57 eV. Heat treatments at temperatures of 200–300°C bring about the disappearance of all vacancy-containing complexes at a distance from the surface h > 12−9 µm. Most likely, this phenomenon is caused by the decomposition of interstitial-containing complexes located at a depth h > 12−9 µm and their annihilation with the vacancy-containing complexes. Heat treatments at higher temperatures bring about both a further narrowing of the layer that still contains the vacancy-type defects to h ≈ 6 µm at 500°C and a change in the set of observable electrically active centers in the temperature range from 400 to 500°C. Specific features of the annealing of radiation defects after high-energy ion implantation are caused by spatial separation of the vacancy-and interstitial-containing defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Privitera, S. Coffa, F. Priolo, et al., Nucl. Instrum. Methods Phys. Res. B 120, 9 (1996).

    Article  ADS  Google Scholar 

  2. A. Agarwal, K. Christinsen, D. Venables, et al., Appl. Phys. Lett. 69, 3899 (1996).

    Article  ADS  Google Scholar 

  3. R. A. Brown, O. Kononchuk, G. A. Rozgonyi, et al., J. Appl. Phys. 84, 2459 (1998).

    Article  ADS  Google Scholar 

  4. R. Koglar, R. Yankov, J. R. Kaschny, et al., Nucl. Instrum. Methods Phys. Res. B 142, 493 (1998).

    ADS  Google Scholar 

  5. A. Kvit, R. A. Yankov, G. Duscher, et al., Appl. Phys. Lett. 83, 1367 (2003).

    Article  ADS  Google Scholar 

  6. V. C. Venezia, L. Pelaz, H.-J. L. Grossmann, et al., Appl. Phys. Lett. 79, 1273 (2001).

    ADS  Google Scholar 

  7. P. I. Gaiduk, A. N. Larsen, J. L. Harsen, and C. Trautmann, Appl. Phys. Lett. 83, 1746 (2003).

    Article  ADS  Google Scholar 

  8. S. A. Smagulova, I. V. Antonova, E. P. Neustroev, and V. A. Skuratov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 565 (2003) [Semiconductors 37, 546 (2003)].

    Google Scholar 

  9. I. V. Antonova, E. P. Neustroev, A. Misiuk, and V. A. Skuratov, Solid State Phenom. 82–84, 243 (2002).

    Google Scholar 

  10. P. Hazdra, J. Rubes, and J. Vobecky, Nucl. Instrum. Methods Phys. Res. B 159, 207 (1999).

    Article  ADS  Google Scholar 

  11. Problems in Radiation Technology of Semiconductors, Ed. by L. S. Smirnov (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  12. I. V. Antonova, A. V. Vasil’ev, V. M. Panov, and S. S. Shaĭmeev, Fiz. Tekh. Poluprovodn. (Leningrad) 23, 998 (1989) [Sov. Phys. Semicond. 23, 671 (1989)].

    Google Scholar 

  13. T. H. Lee, N. N. Gerasimenko, and J. J. Corbett, Phys. Rev. B 14, 4506 (1976).

    ADS  Google Scholar 

  14. A. V. Vasil’ev, M. A. Kopshik, S. A. Smagulova, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 17, 1155 (1983) [Sov. Phys. Semicond. 17, 729 (1983)].

    Google Scholar 

  15. J. L. Benton, L. O. Kimerlin, and M. Stavola, Physica B (Amsterdam) 116, 271 (1983).

    Google Scholar 

  16. V. P. Markovich and L. M. Murin, Fiz. Tekh. Poluprovodn. (Leningrad) 25, 1737 (1991) [Sov. Phys. Semicond. 25, 1045 (1991)].

    Google Scholar 

  17. I. V. Antonova, V. P. Popov, A. E. Plotnikov, and A. Misiuk, J. Electrochem. Soc. 146, 1575 (1999).

    Article  Google Scholar 

  18. S. Fatima, J. Wong-Leung, J. Fitz Gerald, and C. Jagadish, Appl. Phys. Lett. 74, 1141 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Antonova, S.S. Shaĭmeev, S.A. Smagulova, 2006, published in Fizika i Tekhnika Poluprovodnikov, 2006, Vol. 40, No. 5, pp. 557–562.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonova, I.V., Shaĭmeev, S.S. & Smagulova, S.A. Transformation of electrically active defects as a result of annealing of silicon implanted with high-energy ions. Semiconductors 40, 543–548 (2006). https://doi.org/10.1134/S106378260605006X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378260605006X

PACS numbers

Navigation