Plasma-Enhanced Chemical Vapor Deposition of Silicon Films at Low Pressure in GEC Reference Cell

Abstract—

A self-consistent fluid simulation of inductively coupled plasma-enhanced chemical vapour deposition (ICP-CVD) using silane, argon, and hydrogen mixture is presented. The model solves the continuity equations for charged species, the drift-diffusion equations to describe their transport and the electron energy balance equation, coupled with Maxwell’s and Poisson’s equations, using COMSOL Multiphysics software. In order to obtain a better comprehending of the discharge parameters, a discharge in a Gaseous Electronics Conference cell (GEC) reactor is simulated. In this study, the GEC reactor with five-turn inductive coils is driven at a radio frequency of 13.56 MHz in order to sustain the plasma discharge at low temperature for a mixture of SiH4/Ar/H2, with an intial gas pressure fixed at 20 mTorr. The simulations yield the profile of plasma components such as electron density and temperature as well as the electrical potential in the centre of the discharge during silicon films deposition. The effects of external settings, such as chamber pressure, applied power and hydrogen dilution, on the growth rate of the silicon films deposited by ICP-CVD are then investigated. It is shown that the increase of the applied power from 1000 to 3000 W and the gas pressure from 10 to 40 mTorr results in a moderate increase in the deposition rate of the silicon films, whereas the increase in the dilution of the hydrogen in the mixture produces its decrease.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    J. K. Saha, H. Jia, N. Ohse, and H. Shirai, Thin Solid Films 515, 4098 (2007).

    ADS  Article  Google Scholar 

  2. 2

    N. A. Bakr., A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar, D. P. Amalnerkar, V. G. Sathe, S. W. Gosavi, and S. R. Jadkar, Thin Solid Films 519, 3501 (2011).

    ADS  Article  Google Scholar 

  3. 3

    S. K. Kim, S. I. Cho, Y. J. Choi, K. S. Cho, S. M. Pietruszko, and J. Jang, Thin Solid Films 337, 200 (1999).

    ADS  Article  Google Scholar 

  4. 4

    D. Y. Wei, S. Q. Xia, S. Y. Huang, C. S. Chan, H. P. Zhou, L. X. Xu, Y. N. Guo, J. W. Chai, S. J. Wangand, and S. Xu, J. Phys. D: Appl. Phys. 46, 215501 (2013).

  5. 5

    R. Amrani, F. Pichot, L. Chahed, and Y. Cuminal, Cryst. Struct. Theory Appl. 1, 57 (2012).

    Google Scholar 

  6. 6

    S. Juneja, S. Sudhakar, J. Gope, and S. Kumar, Mater. Sci. Semicond. Process. 40, 11 (2015).

    Article  Google Scholar 

  7. 7

    K. Kandoussi, C. Simon, N. Coulon, K. Belarbiand, and T. Mohammed-Brahim, J. Non-Cryst. Solids 354, 2513 (2008).

    ADS  Article  Google Scholar 

  8. 8

    S. K. Kim, Y. J. Choi, K. S. Cho, and J. Jang, IEEE Trans. Electron Devices 46, 1001 (1999).

    ADS  Article  Google Scholar 

  9. 9

    M. Li, H.-M. Wu, and Y. Chen, IEEE Trans. Plasma Sci. 23, 558 (1995).

    ADS  Article  Google Scholar 

  10. 10

    H. P. Zhou, D. Y. Wei, S. Xu, S. Q. Xiao, L. X. Xu, S. Y. Huang, Y. N. Guo, W. S. Yan, and M. Xu, J. Appl. Phys. 110, 023517 (2011).

  11. 11

    D. Raha and D. Das, Appl. Surf. Sci. 276, 249 (2013).

    ADS  Article  Google Scholar 

  12. 12

    S. H. Lee, I. Lee, and J. Yi, Surf. Coat. Technol. 153, 67 (2002).

    Article  Google Scholar 

  13. 13

    C. Jia, J. Linhong, W. Kesheng, H. Chuankun, and S. Yixiang, J. Semicond. 34, 066004 (2013).

  14. 14

    C. S. Oh, T. H. Kim, K. Y. Lim, and J. W. Yang, Semicond. Sci. Technol. 19, 172 (2004).

    ADS  Article  Google Scholar 

  15. 15

    M. Mao, Y. N. Wang, and A. Bogaerts, J. Phys. D: Appl. Phys. 44, 435202 (2011).

  16. 16

    J. H. Choi, L. Latu-Romain, E. Bano, F. Dhalluin, T. Chevolleau, and T. Baron, J. Phys. D: Appl. Phys. 45, 235204 (2012).

  17. 17

    E. R. Keiterand and M. J. Kushner, IEEE Trans. Plasma Sci. 27, 62 (1999).

    ADS  Article  Google Scholar 

  18. 18

    Q. Cheng, S. Xu, J. W. Chai, S. Y. Huang, Y. P. Ren, J. D. Long, P. P. Rutkevych, and K. Ostrikov, Thin Solid Films 516, 5991 (2008).

    ADS  Article  Google Scholar 

  19. 19

    L. da Silva Zambom, R. D. Mansano, and R. Furlan, Vacuum 65, 213 (2002).

    ADS  Article  Google Scholar 

  20. 20

    J. Justine, T. Bartel, G. A. Hebner, and J. Woodwort, J. Electrochem. Soc. 144, 2448 (1997).

    ADS  Article  Google Scholar 

  21. 21

    A. O. Brezmes and C. Breitkopf, Vacuum 116, 65 (2015).

    ADS  Article  Google Scholar 

  22. 22

    B. Ramamurthi and D. J. Economou, Plasma Sources Sci. Technol. 11, 324 (2002).

    ADS  Article  Google Scholar 

  23. 23

    Y. Wang, R. J. Van Brunt, and J. K. Olthoff, J. Appl. Phys. 83, 703 (1998).

    ADS  Article  Google Scholar 

  24. 24

    D. P. Lymberopoulos and D. J. Economou, J. Res. Natl. Inst. Stand. Technol. 100, 473 (1995).

    Article  Google Scholar 

  25. 25

    M. Chakraborty, A. Banerjee, and D. Das, Phys. E: Low-Dimens. Syst. Nanostruct. 61, 95 (2014).

    Google Scholar 

  26. 26

    C. Li, J. H. Hsieh, K. L. Huang, Y. T. Shao, and Y. W. Chen, Thin Solid Films 544, 37 (2013).

    ADS  Article  Google Scholar 

  27. 27

    J. H. Hsieh, H. C. Liang, Y. Setsuhara, and C. Li, Surf. Coat. Technol. 231, 550 (2013).

    Article  Google Scholar 

  28. 28

    Comsol Multiphysics TM Software, Version 4.3a, COMSOL Inc., http://www.comsol.com.

  29. 29

    M. Huang, P. Y. Yang, D. S. Hanselman, C. A. Monnig, and G. M. Hieftje, Spectrochim. Acta, Part B 45, 511 (1990).

    ADS  Article  Google Scholar 

  30. 30

    H. Singh and D. B. Graves, J. Appl. Phys. 88, 3889 (2000).

    ADS  Article  Google Scholar 

  31. 31

    H.-C. Lee, J.-Y. Bang, and C.-W. Chung, Thin Solid Films 519, 7009 (2011).

    ADS  Article  Google Scholar 

  32. 32

    K. De Bleecker, A. Bogaerts, and R. Gijbels, Phys. Rev. E. 69, 056409 (2004).

  33. 33

    Wang Xifeng, Song Yuanhong, Zhao Shuxia, Dai Zhongling, and Wang Younian, Plasma Sci. Technol. 18, 394 (2016).

    ADS  Article  Google Scholar 

  34. 34

    D. Stephan, D. Bluhm, V. Bolsinger, W. Dobrygin, O. Schmidt, and R. P. Brinkmann, Plasma Sources Sci. Technol. 22, 055009 (2013).

  35. 35

    Chen Jiuxiang, Wang Weizhong, Jyh Shiram Cherng, and Qiang Chen, Plasma Sci. Technol. 16, 502 (2014).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Professor S. Sahli, Director of the LMI Laboratory. And we also express our thanks to our colleague, R. Abidat for her encouragement and help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Siari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siari, K., Rebiai, S., Bahouh, H. et al. Plasma-Enhanced Chemical Vapor Deposition of Silicon Films at Low Pressure in GEC Reference Cell. Plasma Phys. Rep. 46, 667–674 (2020). https://doi.org/10.1134/S1063780X20060094

Download citation

Keywords:

  • inductively coupled plasma
  • GEC reference cell
  • silicon films
  • plasma-enhanced chemical vapor deposition
  • high-density plasma
  • deposition rate