Study of Near-Electrode Plasma and Electrode Surface During Discharges in Electrolytes


The cathode plasma of a discharge in an electrolyte based on sodium carbonate and sodium hydroxide is studied as well as its interaction with the surface of electrolytes made from tungsten, tantalum, and titanium. The electrotechnical properties of the discharge are measured by spectral methods and the electron temperature of the near-cathode plasma is determined. When tungsten electrodes are used, 0.2–1.5-µm-diameter thread-like structures appear on their surface. Interaction with the discharge current destroys tantalum electrodes. On the surface of titanium electrodes, 1–40-µm-diameter sphere-like formations and areas of a porous surface with a pore diameter of 0.1–1 µm are observed. The mechanism of the formation of these surface structures is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    Al. F. Gaisin, N. F. Kashapov, A. I. Kuputdinova, and R. A. Mukhametov, Tech. Phys. 63, 695 (2018).

  2. 2

    R. R. Kayumov, Al. F. Gaysin, E. E. Son, Az. F. Gaysin, and F. M. Gaysin, Phys. Scr. 2010 (T142), 014038 (2010).

  3. 3

    F. M. Gaisin and E. E. Son, Electrophysical Processes in Discharges with Solid and Liquid Electrodes (Izd. Ural’skogo Univ., Sverdlovsk, 1989) [in Russian].

  4. 4

    F. M. Kanarev, Low Current Electrolysis of Water (Izd-vo Krasnodarskogo Univ., Krasnodar, 2010) [in Russian].

    Google Scholar 

  5. 5

    D. L. Kirko, Tech. Phys. 60, 505 (2015).

    Article  Google Scholar 

  6. 6

    I. V. Suminov and A. V. Epel’fel’d, Pribory, No. 9, 13 (2001).

  7. 7

    S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Brug-geman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, et al., J. Phys. D: Appl. Phys. 45, 253001 (2012).

  8. 8

    P. Bruggeman and Ch. Leys, J. Phys. D: Appl. Phys. 42, 053001 (2009).

  9. 9

    V. V. Rybkin and D. A. Shutov, Plasma Phys. Rep. 43, 1089 (2017).

    ADS  Article  Google Scholar 

  10. 10

    B. Pongrac and Z. Machala, IEEE Trans. Plasma Sci. 39, 2664 (2011).

    ADS  Article  Google Scholar 

  11. 11

    V. I. Krauz, Yu. V. Martynenko, N. Yu. Svechnikov, V. P. Smirnov, V. G. Stankevich, and L. N. Khimchenko, Phys.–Usp. 53, 1015 (2010).

    Article  Google Scholar 

  12. 12

    V. I. Krauz, L. N. Khimchenko, V. V. Myalton, V. P. Vinogradov, Yu. V. Vinogradova, V. M. Gureev, V. S. Koidan, V. P. Smirnov, and V. E. Fortov, Plasma Phys. Rep. 39, 289 (2013).

    ADS  Article  Google Scholar 

  13. 13

    B. M. Smirnov, Phys.–Usp. 60, 1236 (2017).

    Article  Google Scholar 

  14. 14

    D. L. Kirko and A. S. Savjolov, J. Phys.: Conf. Ser. 941, 012018 (2017).

  15. 15

    D. L. Kirko and A. S. Savjolov, J. Phys.: Conf. Ser. 747, 012002 (2016).

  16. 16

    N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (Academic, New York, 1973).

    Google Scholar 

  17. 17

    S. M. Korobeinikov, A. V. Melekhov, and A. S. Besov, High Temp. 40, 652 (2002).

    Article  Google Scholar 

  18. 18

    Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965).

    Google Scholar 

  19. 19

    A. M. Glezer and I. E. Permyakova, Nanocristals Hardened from Melt (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  20. 20

    G. Cao and Y. Wang, Nanostructures and Nanomaterials. Synthesis, Properties, and Applications, 2nd ed. (World Scientific, Singapore, 2010).

Download references

Author information



Corresponding author

Correspondence to D. L. Kirko.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kirko, D.L. Study of Near-Electrode Plasma and Electrode Surface During Discharges in Electrolytes. Plasma Phys. Rep. 46, 597–603 (2020).

Download citation


  • discharge in electrolyte
  • plasma interaction with metal surface
  • sphere-like formations
  • thread-like structures