Skip to main content
Log in

Effect of Magnetic Field on the Spectral Characteristics of Thermal Motion of Charged Particles in an Isotropic Trap

  • PLASMA KINETICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from analytical and numerical studies of the effect of a dc magnetic field on the spectral characteristics of thermal motion of charged particles in an isotropic electrostatic trap. An analytic expression for the spectral density of the shifts of the center of mass of the systems under study is obtained. The analytic expression is verified by numerically simulating ensembles with different numbers of particles interacting via the Coulomb potential in a wide range of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1974).

    Google Scholar 

  2. Ya. I. Frenkel, Kinetic Theory of Liquids (Nauka, Moscow, 1975; Oxford University Press, Oxford, 1976).

  3. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley Interscience, New York, 1975).

    MATH  Google Scholar 

  4. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes (Khimiya, Moscow, 1986; Nova Science, Commack, NY, 1989).

  5. O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasma: Experiment and Theory (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  6. Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).

    Google Scholar 

  7. Y. P. Raizer, V. I. Kisin, and J. E. Allen, Gas Discharge Physics (Springer, Berlin, 2011).

    Google Scholar 

  8. J. I. Jimenez-Aquino, R. M. Velasco, and F. J. Uribe, Phys. Rev. E 77, 051105 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  9. L. J. Hou, Z. L. Miskovic, A. Piel, and P. K. Shukla, Phys. Plasmas 16, 053705 (2009).

    Article  ADS  Google Scholar 

  10. B. Farokhi, M. Shahmansouri, and P. K. Shukla, Phys. Plasmas 16, 063703 (2009).

    Article  ADS  Google Scholar 

  11. O. S. Vaulina, E. A. Lisin, and E. A. Sametov, JETP 125, 976 (2017).

    Article  ADS  Google Scholar 

  12. E. A. Sametov, R. A. Timirkhanov, and O. S. Vaulina, Phys. Plasmas 24, 123504 (2017).

    Article  ADS  Google Scholar 

  13. O. S. Vaulina and K. G. Adamovich, JETP 106, 955 (2008).

    Article  ADS  Google Scholar 

  14. O. S. Vaulina, K. G. Adamovich, O. F. Petrov, and V. E. Fortov, JETP 107, 313 (2008).

    Article  ADS  Google Scholar 

  15. O. S. Vaulina, E. A. Lisin, A. V. Gavrikov, O. F. Petrov, and V. E. Fortov, JETP 110, 662 (2010).

    Article  ADS  Google Scholar 

  16. O. S. Vaulina and E. A. Lisin, Phys. Plasmas 16, 113702 (2009).

    Article  ADS  Google Scholar 

  17. V. E. Fortov, O. F. Petrov, O. S. Vaulina, and K. G. Koss, JETP Lett. 97, 322 (2013).

    Article  ADS  Google Scholar 

  18. G. A. Hebner, M. E. Riley, and K. E. Greenberg, Phys. Rev. E 66, 046407 (2002).

    Article  ADS  Google Scholar 

  19. O. S. Vaulina and I. E. Drangevski, Phys. Scr. 73, 577 (2006).

    Article  ADS  Google Scholar 

  20. M. M. Vasil’ev, L. G. D’yachkov, S. N. Antipov, O. F. Petrov, and V. E. Fortov, JETP Lett. 86, 358 (2007).

    Article  ADS  Google Scholar 

  21. L. G. D’yachkov, O. F. Petrov, and V. E. Fortov, Contrib. Plasma Phys. 49, 134 (2009).

    Article  ADS  Google Scholar 

  22. V. Yu. Karasev, E. S. Dzlieva, A. Yu. Ivanov, and A. I. Eikhval’d, Phys. Rev. E 74, 066403 (2006).

    Article  ADS  Google Scholar 

  23. N. Sato, G. Uchida, and T. Kaneko, Phys. Plasmas 8, 1786 (2001).

    Article  ADS  Google Scholar 

  24. R. F. Post, Rev. Mod. Phys. 28, 338 (1956).

    Article  ADS  Google Scholar 

  25. L. A. Artsimovich, Controlled Thermonuclear Reactions (Fizmatgiz, Moscow, 1961; Gordon & Breach, New York, 1964).

  26. R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002).

    Article  ADS  Google Scholar 

  27. A. V. Timofeev, Plasma Phys. Rep. 33, 890 (2007).

    Article  ADS  Google Scholar 

  28. B. P. Cluggish, F. A. Anderegg, R. L. Freeman, J. Gilleland, T. J. Hilsabeck, and R. C. Isler, IEEE Trans. Plasma Sci. 12, 057101 (2005).

    Google Scholar 

  29. N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, V. P. Smirnov, and Yu. S. Khomyakov, Yad. Fiz. Inzhin. 5, 944 (2014).

    Google Scholar 

  30. V. P. Smirnov, A. A. Samokhin, N. A. Vorona, and A. V. Gavrikov, Plasma Phys. Rep. 39, 456 (2013).

    Article  ADS  Google Scholar 

  31. V. B. Yuferov, A. M. Egorov, V. O. Il’icheva, S. V. Sharyi, and K. I. Zhivankov, Vopr. At. Nauki Tekh., Ser. Fiz. Radiat. Povrezhd. Radiat. Materialoved. 101, 148 (2013).

    Google Scholar 

  32. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

  33. E. A. Lisin and O. S. Vaulina, JETP 115, 947 (2012).

    Article  ADS  Google Scholar 

  34. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  ADS  Google Scholar 

  35. O. S. Vaulina and E. A. Sametov, JETP 127, 350 (2018).

    Article  ADS  Google Scholar 

  36. A. A. Voronov, Theory of Automatic Control (Vysshaya Shkola, Moscow, 1986), Part 2 [in Russian].

  37. A. A. Shchegol’kov, Molodezh. Nauchno-Tekh. Vest. 8, 24 (2013).

    Google Scholar 

  38. O. S. Vaulina, I. I. Lisina, and E. A. Lisin, Plasma Phys. Rep. 44, 270 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 14-29-00231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Vaulina.

Additional information

Translated by E. Voronova

APPENDIX

APPENDIX

Any solution F(t) to problem (2) and (3) can be represented as the superposition

$$F(t) = {{C}_{0}} + \sum\limits_{i = 1}^4 {{{C}_{i}}\exp ({{\lambda }_{i}}t)} ,$$
((A.1))

where for the function \(\left\langle {x{{{(t)}}^{2}}} \right\rangle \) and for the function \(\left\langle {x({{t}^{*}})x({{t}^{*}} + t)} \right\rangle \). The coefficient Сi (\(i = 1,2,3,4\)) for these functions can be found from the initial conditions of the problem: , \(dF\left( 0 \right){\text{/}}dt = 0\), , \({{d}^{3}}F\left( 0 \right){\text{/}}d{{t}^{3}} = 0\), where Т0 = 0 for \(\left\langle {x{{{(t)}}^{2}}} \right\rangle \), for \(\left\langle {x({{t}^{*}})x({{t}^{*}} + t)} \right\rangle \), Т2 = 2T/М for \(\left\langle {x{{{(t)}}^{2}}} \right\rangle \), and Т2 = ‒2T/М for \(\left\langle {x({{t}^{*}})x({{t}^{*}} + t)} \right\rangle \). As a result, we obtain the following set of equations for the coefficients Сi:

$$\sum\limits_{i = 1}^4 {{{C}_{i}} = \pm \;\frac{{2T}}{{M\omega _{t}^{2}}}} ,$$
((A.2))
$$\sum\limits_{i = 1}^4 {{{\lambda }_{i}}{{C}_{i}} = 0} ,$$
((A.3))
$$\sum\limits_{i = 1}^4 {\lambda _{i}^{2}{{C}_{i}} \pm \frac{{2T}}{M}} = 0,$$
((A.4))
$$\sum\limits_{i = 1}^4 {\lambda _{i}^{3}{{C}_{i}} = 0} .$$
((A.5))

Hereinafter, the minus sign refers to the function \(\left\langle {x{{{(t)}}^{2}}} \right\rangle \), while the plus sign refers to the function \(\left\langle {x({{t}^{*}})x({{t}^{*}} + t)} \right\rangle \). Thus, for the coefficients Сi, we have

((A.6))
((A.7))
((A.8))
((A.9))

Using formulas (5a) and (5b) for the eigenfrequencies λi and assuming that and \({{\nu }^{2}} - {{D}_{1}}^{2}{\text{/}}2 \ll 2{{\omega }_{{1,2}}}\) (where \({{\omega }_{1}} = {{(\Psi _{1}^{2} + \Omega _{1}^{2})}^{{1/2}}}\) and \({{\omega }_{2}} = {{(\Psi _{2}^{2} + \Omega _{2}^{2})}^{{1/2}}}\)), we represent formulas (6)(9) as

((A.10))
((A.11))
((A.12))
((A.13))

Here, and \({{B}_{2}}\, = \,\sqrt 2 (\omega _{1}^{2}\, - \,\omega _{t}^{2}){\text{/}}\).

Note that the above-mentioned conditions \(D_{1}^{2} \ll \) and \({{\nu }^{2}} - D_{1}^{2}{\text{/}}2 \ll 2{{\omega }_{{1,2}}}\) are satisfied when \({{({{\Psi }_{{1,2}}})}^{2}} \ll {{({{\Omega }_{{1,2}}})}^{2}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaulina, O.S., Sametov, E.A. Effect of Magnetic Field on the Spectral Characteristics of Thermal Motion of Charged Particles in an Isotropic Trap. Plasma Phys. Rep. 45, 237–245 (2019). https://doi.org/10.1134/S1063780X19020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19020120

Navigation