Skip to main content
Log in

Analytical Model of a Surface Barrier Discharge Development

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The propagation of the front of a single surface dielectric barrier microdischarge is studied using an analytical model based on the charge balance equation. The model allows one to find analytical dependences of the discharge propagation velocity and the length of the discharge zone on the parameters of the dielectric barrier and applied voltage pulse. To solve the problem, the results of numerical simulations of the distributions of the electric field, potential, and electron density along the discharge channel are used. The results obtained with the help of the proposed model agree qualitatively with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. T. C. Corke, M. L. Post, and D. M. Orlov, Exp. Fluids 46, 1 (2009).

    Article  Google Scholar 

  2. N. Benard and E. Moreau, Exp. Fluids 55, 1846 (2014).

    Article  Google Scholar 

  3. A. Starikovskiy and N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013).

    Article  Google Scholar 

  4. S. M. Starikovskaia, J. Phys. D 47, 353001 (2014).

    Article  ADS  Google Scholar 

  5. S. B. Leonov, I. V. Adamovich, and V. R. Soloviev, Plasma Sources Sci. Technol. 25, 063001 (2016).

    Article  ADS  Google Scholar 

  6. V. R. Soloviev and V. M. Krivtsov, J. Phys. D 42, 125208 (2009).

    Article  ADS  Google Scholar 

  7. S. A. Stepanyan, V. R. Soloviev, and S. M. Starikovskaia, J. Phys. D 47, 485201 (2014).

    Article  Google Scholar 

  8. V. R. Soloviev, V. M. Krivtsov, S. A. Shcherbanev, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 26, 014001 (2017).

    Article  ADS  Google Scholar 

  9. M. M. Nudnova, N. L. Aleksandrov, and A. Yu. Starikovskii, Plasma Phys. Rep. 36, 90 (2010).

    Article  ADS  Google Scholar 

  10. Th. Unfer and J. P. Boeuf, J. Phys. D 42, 194017 (2009).

    Article  ADS  Google Scholar 

  11. M. I. D’yakonov and V. Yu. Kachorovskii, Sov. Phys. JETP 67, 1049 (1988).

    Google Scholar 

  12. M. I. D’yakonov and V. Yu. Kachorovskii, Sov. Phys. JETP 68, 1070 (1989).

    Google Scholar 

  13. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

  14. N. Benard and E. Moreau, Appl. Phys. Lett. 100, 193503 (2012).

    Article  ADS  Google Scholar 

  15. V. R. Soloviev, I. V. Selivonin, and I. A. Moralev, Phys. Plasmas 24, 103528 (2017).

    Article  ADS  Google Scholar 

  16. S. A. Stepanyan, A. Yu. Starikovskiy, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 23, 045003 (2014).

    Article  ADS  Google Scholar 

  17. V. R. Soloviev and V. M. Krivtsov, Plasma Phys. Rep. 40, 65 (2014).

    Article  ADS  Google Scholar 

  18. V. Soloviev and V. Krivtsov, J. Phys. Conf. Ser. 927, 012059 (2017).

    Article  Google Scholar 

  19. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

  20. M. I. D’yakonov and A. S. Furman, Sov. Phys. JETP 65, 574 (1987).

    Google Scholar 

  21. A. N. Lagarkov and I. M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Nauka, Moscow, 1989; Springer-Verlag, 1994).

  22. S. V. Pancheshnyi and A. Yu. Starikovskii, Plasma Sources Sci. Technol. 13, 1 (2004).

    Article  Google Scholar 

  23. G. V. Naidis, Phys. Rev. E 79, 057401 (2009).

    Article  ADS  Google Scholar 

  24. S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 34, 1 (2001).

    Article  Google Scholar 

  25. M. B. Zheleznyak, A. Kh. Mnatsakanyan, and S. V. Sizykh, High Temp. 20, 357 (1982).

    ADS  Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  27. V. I. Gibalov and G. J. Pietsch, J. Phys. D 33, 2618 (2000).

    Article  ADS  Google Scholar 

  28. G. J. Pietsch and A. Saveliev, in Proceedings of the14th International Conference on Gas Discharges and Their Applications, Liverpool, 2002, p. 183.

  29. Yu. Akishev, G. Aponin, A. Balakirev, M. Grushin, V. Karalnik, A. Petryakov, and N. Trushkin, Plasma Sources Sci. Technol. 22, 015004 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to G.V. Naidis for useful discussions and acquainting me with works [11, 12]. This work was supported by the Ministry of Education and Science of the Russian Federation, grant no. 3.9279.2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Soloviev.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, V.R. Analytical Model of a Surface Barrier Discharge Development. Plasma Phys. Rep. 45, 264–276 (2019). https://doi.org/10.1134/S1063780X19020119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19020119

Navigation