Skip to main content
Log in

Electric Field and Poloidal Rotation in the Turbulent Edge Plasma of the T-10 Tokamak

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The dynamics of turbulent edge plasma in the T-10 tokamak is simulated numerically by solving reduced nonlinear MHD equations of Braginskii’s two-fluid hydrodynamics. It is shown that the poloidal plasma velocity is determined by the combined effect of two forces: the turbulent Reynolds force FR and the Stringer–Winsor geodesic force FSW, which is associated with the geodesic acoustic mode of the total plasma pressure \(\left\langle {p{\text{sin}}\theta } \right\rangle \). It follows from the simulation results that the FR and FSW forces are directed oppositely and partially balance one another. It is shown that, as the electron temperature increases, the resulting balance of these forces changes in such a way that the amplitude of the poloidal ion flow velocity and, accordingly, the electrostatic potential \({{\phi }_{0}}(r,t)\) decrease. As the plasma density increases, the “driving forces” of turbulence (the dn0/dr and dp0/dr gradients) also increase, while dissipation due to the longitudinal current decreases, which results in an increase in the amplitude of turbulent fluctuations and the Reynolds force FR. On one hand, the force FSW increases with increasing plasma density due to an increase in the pressure \(\left\langle {p{\text{sin}}\theta } \right\rangle \); however, on the other hand, it decreases in view of the factor 1/n0. As a result, the net force driving poloidal rotation increases, which leads to the growth of the plasma potential. Both under electron-cyclotron resonance heating and in regimes with evolving plasma density, the results of numerical simulations qualitatively agree with experimental data on the electrostatic potential of the T-10 plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. V. Melnikov, Electric Potential in Plasmas of Toroidal Devices (NIYaU MIFI, Moscow, 2015) [in Russian].

  2. F. Wagner, Plasma Phys. Controlled Fusion 49, B1 (2007).

    Article  ADS  Google Scholar 

  3. T. Viezzer, G. D. Putterich, R. Conway, R. Dux, T. Happel, J. C. Fuchs, R. M. McDermott, F. Ryter, B. Sieglin,W. Suttrop1, M. Willensdorfer, E. Wolfrum, and the ASDEX Upgrade Team, Nucl. Fusion 53, 053005 (2013).

    Article  ADS  Google Scholar 

  4. A. V. Melnikov, V. A. Vershkov, and S. A. Grashin, in Proceedings of the 37th EPS Conference on Plasma Physics, Dublin, 2010, ECA 34A, O5.1280 (2010).

  5. A. V. Melnikov, L. G. Eliseev, S. V. Perfilov, V. F. Andreev, S. A. Grashin, K. S. Dyabilin, A. N. Chudnovskiy, M. Yu. Isaev, S. E. Lysenko, V. A. Mavrin, M. I. Mikhailov, D. V. Ryzhakov, R. V. Shurygin, and V. N. Zenin, Nucl. Fusion 53, 093019 (2013).

    Article  ADS  Google Scholar 

  6. A. N. Simakov and P. J. Catto, Phys. Plasmas 10, 4744 (2003).

    Article  ADS  Google Scholar 

  7. A. Zeiler, J. F. Drake, and B. Rogers, Phys. Plasmas 4, 2134 (1997).

    Article  ADS  Google Scholar 

  8. R. V. Shurygin and D. Kh. Morozov, Plasma Phys. Rep. 40, 919 (2014).

    Article  ADS  Google Scholar 

  9. R. V. Shurygin and A. A. Mavrin, Plasma Phys. Rep. 36, 535 (2010).

    Article  ADS  Google Scholar 

  10. O. E. Garsia, N. H. Bian, and W. Fundamenski, Phys. Plasmas 13, 082309 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. P. N. Guzdar and A. B. Hassam, Phys. Plasmas 3, 3701 (1996).

    Article  ADS  Google Scholar 

  12. R. V. Shurygin and A. V. Melnikov, Plasma Phys. Rep. 44, 303 (2018).

    Article  ADS  Google Scholar 

  13. D. R. McCarthy, J. F. Drake, P. N. Guzdar, and A. B. Hassam, Phys. Fluids 4, 1188 (1993).

    Article  Google Scholar 

  14. N. Miyato, J. Li, and Y. Kishimoto, Nucl. Fusion 45, 425 (2006).

    Article  ADS  Google Scholar 

  15. V. A. Rozhansky, S. P. Voskoboynikov, E. G. Kaveeva, D. P. Coster, and R. Schneider, Nucl. Fusion 41, 387 (2001).

    Article  ADS  Google Scholar 

  16. V. A. Rozhansky, S. P. Voskoboynikov, E. G. Kaveeva, D. P. Coster, X. Bonnin, and R. Schneider, Nucl. Fusion 43, 614 (2003).

    Article  ADS  Google Scholar 

  17. V. Rozhansky, Contrib. Plasma Phys. 46, 575 (2006).

    Article  ADS  Google Scholar 

  18. T. D. Rognlien, D. D. Ryutov, N. Mattor, and C. D. Porter, Phys. Plasmas 6, 1851 (1999).

    Article  ADS  Google Scholar 

  19. A. V. Melnikov, L. I. Krupnik, L. G. Eliseev, J. M. Barcala, A. Bravo, A. A. Chmyga, G. N. Deshko, M. A. Drabinskij, C. Hidalgo, P. O. Khabanov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, J. Lopez, et al., Nucl. Fusion 57, 072004 (2017).

  20. A. V. Melnikov, L. I. Krupnik, E. Ascasibar, A. Cappa, A. A. Chmyga, G. N. Deshko, M. A. Drabinskij, L. G. Eliseev, C. Hidalgo, P. O. Khabanov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, S. E. Lysenko, et al., Plasma Phys. Controlled Fusion 60, 084008 (2018).

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 14-22-00193. A.V. Melnikov acknowledges the support from the National Research Nuclear University “MEPHI.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Shurygin.

Additional information

Translated by I. Grishina

APPENDIX

APPENDIX

Most experimental data concern plasma parameters averaged over the poloidal angle, \({{f}_{0}}(r,t) = \)\({{\left\langle {f(r,\theta ,t)} \right\rangle }_{\theta }}\). It is useful to derive separate equations for the time evolution of the variables f0 = {\({{V}_{0}},{{n}_{0}},{{p}_{{e,i\,0}}},{{V}_{{||0}}}\)} by using the expansion \(f(r,\theta ,t) = {{f}_{0}}(r,t) + \tilde {f}(r,\theta ,t)\), where \({{f}_{0}} = \left\langle f \right\rangle = {{\left( {2\pi } \right)}^{{ - 1}}}\int_0^{2\pi } {fd\theta } \). After averaging the equations presented in Section 2, we obtain the following equations for the averaged variables:

$$\begin{gathered} \frac{{\partial {{n}_{0}}}}{{\partial t}} + {{\nabla }_{r}}{{\Gamma }_{n}} = {{\Psi }_{n}} + {{D}_{ \bot }}\frac{{{{d}^{2}}{{n}_{0}}}}{{d{{r}^{2}}}}, \\ {{\Gamma }_{n}} = \left\langle {{{{\tilde {V}}}_{{Er}}}\tilde {n}} \right\rangle ,\quad {{\Psi }_{n}} = \left\langle {g\,[nC(\phi ) - \alpha C({{p}_{e}})]} \right\rangle ; \\ \end{gathered} $$
((A.1))
$$\begin{gathered} \frac{{\partial {{p}_{{e0}}}}}{{\partial t}} + {{\nabla }_{r}}{{Q}_{e}} = {{\Psi }_{{pe}}} - \frac{2}{3}\sigma \left\langle {\frac{{\partial {{{\tilde {p}}}_{e}}}}{{\partial \theta }}\frac{{\partial \tilde {H}}}{{\partial \theta }}} \right\rangle \\ - \;\frac{2}{3}\gamma \left\langle {{{{\tilde {p}}}_{e}}\frac{{\partial {{{\tilde {V}}}_{{||i}}}}}{{\partial \theta }}} \right\rangle + {{\chi }_{{ \bot e}}}\frac{{{{d}^{2}}{{p}_{{e0}}}}}{{d{{r}^{2}}}} - \left\langle {{{W}_{{ei}}}} \right\rangle , \\ {{Q}_{e}} = \left\langle {{{{\tilde {V}}}_{{Er}}}{{{\tilde {p}}}_{e}}} \right\rangle , \\ {{\Psi }_{{pe}}} = \left\langle {\frac{5}{3}g\left\{ {[{{p}_{e}}C(\phi ) - \xi C({{p}_{e}}{{T}_{e}})]} \right\}} \right\rangle ; \\ \end{gathered} $$
((A.2))
$$\begin{gathered} \frac{{\partial {{p}_{{i0}}}}}{{\partial t}} + {{\nabla }_{r}}{{Q}_{i}} = {{\Psi }_{{pi}}} - \frac{5}{3}\sigma \left\langle {\frac{{\partial {{{\tilde {p}}}_{i}}}}{{\partial \theta }}\frac{{\partial \tilde {H}}}{{\partial \theta }}} \right\rangle \\ - \;\frac{2}{3}\gamma \left\langle {{{{\tilde {p}}}_{i}}\frac{{\partial {{{\tilde {V}}}_{{||i}}}}}{{\partial \theta }}} \right\rangle + {{\chi }_{{ \bot i}}}\frac{{{{d}^{2}}{{p}_{{i0}}}}}{{d{{r}^{2}}}} + \left\langle {{{W}_{{ei}}}} \right\rangle , \\ {{Q}_{i}} = \left\langle {{{{\tilde {V}}}_{{Er}}}{{{\tilde {p}}}_{i}}} \right\rangle , \\ {{\Psi }_{{pi}}} = \left\langle {\frac{5}{3}g} \right.\{ [{{p}_{i}}C(\phi ) + \xi C({{p}_{i}}{{T}_{i}}) \\ \left. { - _{{}}^{{}}\xi {{T}_{i}}C({{p}_{e}} + {{p}_{i}})]\} } \right\rangle ; \\ \end{gathered} $$
((A.3))
$$\begin{gathered} \frac{{\partial {{V}_{{||0}}}}}{{\partial t}} + {{\nabla }_{r}}{{\Pi }_{{r||}}} = {{\mu }_{ \bot }}\frac{{{{d}^{2}}{{V}_{{||0}}}}}{{d{{r}^{2}}}} + \xi g\frac{{d\left\langle {{{{\tilde {V}}}_{{i||}}}\sin \theta } \right\rangle }}{{dr}}, \\ {{\Pi }_{{r||}}} = \gamma \left\langle {{{{\tilde {V}}}_{{Er}}}{{{\tilde {V}}}_{{i||}}}} \right\rangle . \\ \end{gathered} $$
((A.4))

Set of equations (A.1)–(A.4) should be supplemented with Eq. (8) for the poloidal velocity V0(r, t). When solving set of equations (A.1)–(A.4), the following boundary conditions were used:

$$\begin{gathered} {{n}_{{\text{0}}}}({{r}_{0}}) = {{n}_{b}},\quad {{n}_{{\text{0}}}}(a) = {{n}_{W}},\quad {{p}_{{{\text{0}}e}}}({{r}_{0}}) = {{p}_{{be}}}, \\ {{p}_{{{\text{0}}e}}}(a) = {{p}_{{We}}},\quad {{p}_{{{\text{0}}i}}}({{r}_{0}}) = {{p}_{{bi}}},\quad {{p}_{{{\text{0}}i}}}(a) = {{p}_{{Wi}}}, \\ d{{V}_{{||0}}}({{r}_{0}}){\text{/}}dr = 0,\quad {{V}_{{||0}}}(a) = {{C}_{S}}{\text{/}}{{V}_{{Ti}}},\quad {{V}_{{Ti}}} = \sqrt {\frac{{{{T}_{*}}}}{{{{m}_{i}}}}} . \\ \end{gathered} $$

Turbulent fluxes of the momentum, particles, and heat are calculated as sums of the fluxes of axisymmetric (fA) and ballooning (fB) modes,

$$\begin{gathered} \Pi = \Pi {}_{A}\; + {{\Pi }_{B}},\quad {{\Gamma }_{i}} = {{\Gamma }_{A}} + {{\Gamma }_{B}},\quad {{q}_{{e,i}}} = {{Q}_{{Ae,i}}} + {{Q}_{{Be,i}}}, \\ {{\Pi }_{A}} = \left\langle {{{{\tilde {V}}}_{{Er}}}\tilde {w}} \right\rangle ,\quad {{\Gamma }_{{AX}}} = \left\langle {{{{\tilde {V}}}_{{Er}}}\tilde {n}} \right\rangle ,\quad {{Q}_{{AXe,i}}} = \left\langle {{{{\tilde {V}}}_{{Er}}}{{{\tilde {p}}}_{{e,i}}}} \right\rangle , \\ {{{\tilde {V}}}_{{Er}}} = - \frac{{\text{1}}}{r}\frac{{\partial \tilde {\phi }}}{{\partial \theta }}, \\ \end{gathered} $$
$${{\Pi }_{B}} = - \frac{m}{r}{{\left\langle {\tilde {\omega }\frac{{\partial \tilde {\phi }}}{{\partial \lambda }}} \right\rangle }_{\lambda }} = \frac{m}{{2r}}\left( {{{\phi }_{{BC}}}{{\omega }_{{BS}}} - {{\phi }_{{BS}}}{{\omega }_{{BC}}}} \right),$$
$${{\Gamma }_{B}} = - \frac{m}{r}{{\left\langle {\tilde {n}\frac{{\partial \tilde {\phi }}}{{\partial \lambda }}} \right\rangle }_{\lambda }} = \frac{m}{{2r}}\left( {{{\phi }_{{BC}}}{{n}_{{BS}}} - {{\phi }_{{BS}}}{{n}_{{BC}}}} \right),$$
$$\begin{gathered} {{Q}_{{Bj}}} = - \frac{m}{r}{{\left\langle {{{{\tilde {p}}}_{j}}\frac{{\partial \tilde {\phi }}}{{\partial \lambda }}} \right\rangle }_{\lambda }} = \frac{m}{{2r}}\left( {{{\phi }_{{BC}}}{{p}_{{BSj}}} - {{\phi }_{{BS}}}{{p}_{{BCj}}}} \right), \\ j = e,i. \\ \end{gathered} $$

We note that the main contribution to the transport is made by the fluxes \({{\Pi }_{B}}\), \({{\Gamma }_{B}}\), and \({{Q}_{{Bj}}}\) (\(j = e,i\)), which are associated with ballooning modes. The set of equations for the ballooning modes  fBS,BC = {WBS,BC, \({{n}_{{BS,BC}}}\), \({{p}_{{e\,BS,BC}}}\)} in the case of pi = τpe is presented in [12].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurygin, R.V., Melnikov, A.V. Electric Field and Poloidal Rotation in the Turbulent Edge Plasma of the T-10 Tokamak. Plasma Phys. Rep. 45, 220–229 (2019). https://doi.org/10.1134/S1063780X19020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19020107

Navigation