Skip to main content
Log in

Boundary of the Transition to Hollow Dust Structures in a DC Discharge in Neon with Microparticles

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The boundary (line) of the transition from homogenous dust structures to hollow dust structures in the coordinates gas pressure–discharge current in a glow discharge in neon was found experimentally. The experiments were carried out with spherical particles 2.55 and 4.14 μm in diameter. The transition was simulated using the diffusion–drift model of the positive column of a glow discharge in neon with allowance for the radial temperature gradient. Simulations of the experimental data have shown that the thermophoretic force acting on the microparticles in the dust structure depends on the discharge parameters and the dimensions of the microparticles and the dust structure. The results of this work can be used in dusty plasma technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. H. Kersten, G. Thieme, M. Frohlich, D. Bojic, D. H. Tung, M. Quaas, H. Wulff, and R. Hippler, Pure Appl. Chem. 77, 415 (2005).

    Article  Google Scholar 

  2. L. M. Vasilyak, M. N. Vasil’ev, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, Tech. Phys. Lett. 31, 827 (2005).

    Article  Google Scholar 

  3. T. M. Vasil’eva, High Energy Chem. 45, 66 (2011).

    Article  Google Scholar 

  4. S. V. Vladimirov and K. Ostrikov, Phys. Rep. 393, 175 (2004).

    Article  ADS  Google Scholar 

  5. M. Cavarroc, M. Mikikian, Y. Tessier, and L. Boufendi, IEEE Trans. Plasma Sci. 36, 1016 (2008).

    Article  ADS  Google Scholar 

  6. L. Boufendi, M. Ch. Jouanny, E. Kovacevic, J. Berndt, and M. Mikikian, J. Phys. D 44, 174035 (2011).

    Article  ADS  Google Scholar 

  7. Y. Huttel, Gas-Phase Synthesis of Nano-Particles (Weinheim, Wiley VCH, 2017).

    Book  Google Scholar 

  8. H. Kersten, H. Deutsch, E. Stoffels, W. W. Stoffels, and G. M. W. Kroesen, Int. J. Mass Spectr. 223–224, 313 (2003).

    Article  Google Scholar 

  9. M. N. Vasiliev and A. H. Mahir, Surf. Coat. Technol. 180–181, 132 (2004).

    Article  Google Scholar 

  10. N. A. Polikarpov, N. D. Novikova, G. E. Val’yano, L. M. Vasilyak, I. I. Klimovskii, V. Ya. Pecherkin, E. K. Dobrinskii, and S. I. Malashin, Aviakosmich. Ekologich. Med. 44 (6), 40 (2010).

    Google Scholar 

  11. V. V. Balabanov, L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, D. N. Polyakov, and V. E. Fortov, JETP 92, 86 (2001).

    Article  ADS  Google Scholar 

  12. G. M. Jellum, J. E. Daugherty, and D. B. Graves, J. Appl. Phys. 69, 6923 (1991).

    Article  ADS  Google Scholar 

  13. L. M. Vasilyak, S. P. Vetchinin, V. S. Zimnukhov, D. N. Polyakov, and V. E. Fortov, JETP 96, 436 (2003).

    Article  ADS  Google Scholar 

  14. L. M. Vasilyak, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, JETP 100, 1029 (2005).

    Article  ADS  Google Scholar 

  15. O. Arp, D. Block, M. Klindworth, and A. Piel, Phys. Plasmas. 12, 122102 (2005).

    Article  ADS  Google Scholar 

  16. V. I. Molotkov, O. F. Petrov, M. Yu. Pustyl’nik, V. M. Torchinskii, V. E. Fortov, and A. G. Khrapak, High Temp. 42, 827 (2004).

    Article  Google Scholar 

  17. V. Land, B. Smith, and L. Matthews, IEEE Trans. Plasma Sci. 38, 768 (2010).

    Article  ADS  Google Scholar 

  18. C. Schmidt, O. Arp, and A. Piel, Phys. Plasmas. 18, 013704 (2011).

    Article  ADS  Google Scholar 

  19. V. V. Shimova, D. N. Polyakov, and L. M. Vasilyak, Prikl. Fiz., No. 4, 27 (2015).

    Google Scholar 

  20. V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, J. Phys. D 50, 405202 (2017).

    Article  Google Scholar 

  21. V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Technol. 23, 065008 (2014).

    Article  ADS  Google Scholar 

  22. V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, J. Phys. Conf. Ser. 653, 012132 (2015).

    Article  Google Scholar 

  23. V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Technol. 26, 035011 (2017).

    Article  ADS  Google Scholar 

  24. L. C. Pitchford, J. Phys. D 46, 330301 (2013).

    Article  Google Scholar 

  25. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  26. S. A. Khrapak, A. V. Ivlev, G. E. Morfill, and H. M. Thomas, Phys. Rev. E 66 (4), 046414 (2002).

    Article  ADS  Google Scholar 

  27. H. Rothermel, T. Hagl, G. E. Morfill, M. H. Thoma, and H. M. Thomas, Phys. Rev. Lett. 89, 175001 (2002).

    Article  ADS  Google Scholar 

  28. R. N. Varney, Phys. Rev. 88, 362 (1952).

    Article  ADS  Google Scholar 

  29. D. N. Polyakov, V. V. Shumova, and L. M. Vasilyak, Plasma Phys. Rep. 43, 397 (2017).

    Article  ADS  Google Scholar 

  30. O. Havnes, T. Nitter, V. Tsytovich, G. E. Morfill, and T. Hartquist, Plasma Sources Sci. Technol. 3, 448 (1994).

    Article  ADS  Google Scholar 

  31. M. A. Gallis, D. J. Rader, and J. R. Torczynski, Aerosol Sci. Technol. 36, 1099 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Presidium of the Russian Academy of Sciences under the program no. 13 “Condensed Matter and Plasma at High Energy Densities.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shumova.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumova, V.V., Polyakov, D.N. & Vasilyak, L.M. Boundary of the Transition to Hollow Dust Structures in a DC Discharge in Neon with Microparticles. Plasma Phys. Rep. 45, 285–288 (2019). https://doi.org/10.1134/S1063780X19020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19020090

Navigation