Skip to main content
Log in

Neutral Beam Current Drive in Globus-M Compact Spherical Tokamak

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The article presents research on neutral beam current drive in Globus-M compact spherical tokamak. The experiments were performed in the plasma current range of 0.17–0.20 MA with a 0.4- or 0.5‑T toroidal magnetic field. The injection impact parameter was 33 cm. The variable parameters included compositions of plasma and the heating beam (hydrogen, deuterium), plasma density, and vertical displacement of the plasma column. The simultaneous increase in the plasma current and drop in the loop voltage were used to determine the neutral beam current drive. The injection of a hydrogen/deuterium beam into deuterium or hydrogen plasma resulted in a significant and reproducible drop in the loop voltage (up to 0.5 V). In order to process the obtained data, the authors developed an ASTRA code-based model, which allows one to calculate the neutral beam-driven current and bootstrap current. The share of noninductive currents as a function of plasma density during the injection of a hydrogen beam (28 keV, 0.5 MW) into the deuterium plasma was calculated. The authors analyze the results of experiments on off-axis beam injection achieved by vertical displacement of the plasma column and the effect of increasing the toroidal magnetic field on the consumption of the poloidal magnetic flux in discharges with atomic beam injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M. Shimada, D. J. Campbell, V. Mukhovatov, M. Fujiwara, N. Kirneva, K. Lackner, M. Nagami, V. D. Pustovitov, N. Uckan, J. Wesley, N. Asakura, A. E. Costley, A. J. H. Donn’e, E. J. Doyle, A. Fasoli, et al., Nucl. Fusion 47, 1 (2007).

    Article  Google Scholar 

  2. J. Menard, M. Boyer, T. Brown, J. Canik, B. Covele, C. D’Angelo, A. Davis, L. El-Guebaly, S. Gerhardt, S. Kaye, C. Kessel, M. Kotschenreuther, S. Mahajan, R. Maingi, E. Marriott, et al., in Proceedings of the 25th IAEA Fusion Energy Conference, St. Petersburg, 2014, Paper FNS/1-1.

  3. B. V. Kuteev, E. A. Azizov, A. S. Bykov, A. Y. Dnestrovsky, V. N. Dokuka, G. G. Gladush, A. A. Golikov, P. R. Goncharov, M. Gryaznevich, M. I. Gurevich, A. A. Ivanov, R. R. Khairutdinov, V. I. Khripunov, D. Kingham, A. V. Klishchenko, et al., Nucl. Fusion 51, 073013 (2011).

    Article  ADS  Google Scholar 

  4. J. E. Menard, T. Brown, L. El-Guebaly, M. Boyer, J. Canik, B. Colling, R. Raman, Z. Wang, Y. Zhai, P. Buxton, B. Covele, C. D’Angelo, A. Davis, S. Gerhardt, M. Gryaznevich, et al., Nucl. Fusion 56, 106023 (2016).

    Article  ADS  Google Scholar 

  5. P. B. Shchegolev, N. N. Bakharev, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, Yu. V. Petrov, and N. V. Sakharov, Tech. Phys. 60, 1321 (2015).

    Article  Google Scholar 

  6. C. Gormezano, A. C. C. Sips, T. C. Luce, S. Ide, A. Becoulet, X. Litaudon, A. Isayama, J. Hobirk, M. R. Wade, T. Oikawa, R. Prater, A. Zvonkov, B. Lloyd, T. Suzuki, E. Barbato, et al., Nucl. Fusion 47, 285 (2007).

    Article  Google Scholar 

  7. T. Suzuki, R. J. Akers, D. A. Gates, S. Gunter, W. W. Heidbrink, J. Hobirk, T. C. Luce, M. Murakami, J. M. Park, M. Turnyanskiy, and the ITPA ‘Integrated Operation Scenarios’ group members and experts, Nucl. Fusion 51, 083020 (2011).

    Article  ADS  Google Scholar 

  8. M. Murakami, J. M. Park, C. C. Petty, T. C. Luce, W. W. Heidbrink, T. H. Osborne, R. Prater, M. R. Wade, P. M. Anderson, M. E. Austin, N. H. Brooks, R. V. Budny, C. D. Challis, J. C. DeBoo, J. S. deGrassie, et al., Nucl. Fusion 49, 065031 (2009).

    Article  ADS  Google Scholar 

  9. M. Turnyanskiy, D. L. Keeling, R. Akers, J. G. Cunningham, H. Meyer, and S. D. Pinches, in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper EX/P6-26.

  10. V. K. Gusev, V. E. Golant, E. Z. Gusakov, V. V. D’yachenko, M. A. Irzak, V. B. Minaev, E. E. Mukhin, A. N. Novokhatskii, K. A. Podushnikova, G. T. Razdobarin, N. V. Sakharov, E. N. Tregubova, V. S. Uzlov, O. N. Shcherbinin, V. A. Belyakov, et al., Tech. Phys. 44, 1054 (1999).

    Article  Google Scholar 

  11. V. K. Gusev, A. V. Dech, L. A. Esipov, V. B. Minaev, A. G. Barsukov, G. B. Igon’kina, V. V. Kuznetsov, A. A. Panasenkov, M. M. Sokolov, G. N. Tilinin, A. V. Lupin, and V. K. Markov, Tech. Phys. 52, 1127 (2007).

    Article  Google Scholar 

  12. P. B. Shchegolev, V. B. Minaev, and I. V. Miroshnikov, NTV SPbGPU Fiz.-Mat. Nauki, No. 4, 79 (2012).

    Google Scholar 

  13. G. S. Kurskiev, S. Yu. Tolstyakov, A. A. Berezutskii, V. K. Gusev, M. M. Kochergin, V. B. Minaev, E. E. Mukhin, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, V. V. Semenov, and P. V. Chernakov, Vopr. At. Nauki Tekh., Ser. Termotad. Sintez, No. 2, 81 (2012).

    Google Scholar 

  14. N. N. Bakharev, A. D. Mel’nik, V. B. Minaev, Yu. V. Petrov, and F. V. Chernyshev, NTV SPbGPU Fiz.-Mat. Nauki, No. 4, 74 (2012).

    Google Scholar 

  15. G. F. Avdeeva, I. V. Miroshnikov, N. N. Bakharev, G. S. Kurskiev, M. I. Patrov, V. Yu. Sergeev, and P. B. Shchegolev, J. Phys. Conf. Ser. 666, 012002 (2016).

    Article  Google Scholar 

  16. Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965).

    Google Scholar 

  17. V. K. Gusev, S. E. Bender, A. V. Dech, Yu. A. Kostsov, R. G. Levin, A. B. Mineev, and N. V. Sakharov, Tech. Phys. 51, 987 (2006).

    Article  Google Scholar 

  18. G. V. Pereverzev and P. N. Yushmanov, Preprint No. IPP 5/98 (Institute for Plasma Physics, Garching, 2002).

  19. N. N. Bakharev, F. V. Chernyshev, P. R. Goncharov, V. K. Gusev, A. D. Iblyaminova, V. A. Kornev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, S. Yu. Tolstyakov, et al., Nucl. Fusion 55, 043023 (2015).

    Article  ADS  Google Scholar 

  20. P. B. Shchegolev, V. B. Minaev, A. Yu. Telnova, N. N. Bakharev, V. K. Gusev, G. S. Kurskiev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, and S. Yu. Tolstyakov, in Proceedings of the 43rd EPS Conference on Plasma Physics, Leuven, 2016, ECA 40A, P1.065 (2016). http://ocs.ciemat.es/EPS2016PAP/pdf/P1.065.pdf.

  21. W. A. Houlberg, K. C. Shaing, S. P. Hirshman, and M. C. Zarnstorff, Phys. Plasmas 4, 3230 (1997).

    Article  ADS  Google Scholar 

  22. G. S. Kurskiev, V. K. Gusev, N. V. Sakharov, N. N. Bakharev, A. D. Iblyaminova, P. B. Shchegolev, G. F. Avdeeva, E. O. Kiselev, V. B. Minaev, E. E. Mukhin, M. I. Patrov, Yu. V. Petrov, A. Yu. Telnova, and S. Yu. Tolstyakov, Plasma Phys. Controlled Fusion 59, 045010 (2017).

    Article  ADS  Google Scholar 

  23. V. K. Gusev, E. A. Azizov, A. B. Alekseev, A. F. Arneman, N. N. Bakharev, V. A. Belyakov, S. E. Bender, E. N. Bondarchuk, V. V. Bulanin, A. S. Bykov, F. V. Chernyshev, I. N. Chugunov, V. V. Dyachenko, O. G. Filatov, A. D. Iblyaminova, et al., Nucl. Fusion 53, 093013 (2013).

    Article  ADS  Google Scholar 

  24. G. S. Kurskiev, V. K. Gusev, S. Yu. Tolstyakov, A. A. Berezutskii, V. V. Bulanin, V. I. Varfolomeev, M. M. Kochergin, V. B. Minaev, E. E. Mukhin, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, V. V. Semenov, A. Yu. Yashin, et al., Tech. Phys. Lett. 37, 1127 (2011).

    Article  Google Scholar 

  25. I. T. Chapman, M.-D. Hua, S. D. Pinches, R. J. Akers, A. R. Field, J. P. Graves, R. J. Hastie, C. A. Michael, and the MAST Team, Nucl. Fusion 50, 045007 (2010).

    Article  Google Scholar 

  26. V. B. Minaev, V. K. Gusev, N. V. Sakharov, V. I. Varfolomeev, N. N. Bakharev, V. A. Belyakov, E. N. Bondarchuk, P. N. Brunkov, F. V. Chernyshev, V. I. Davydenko, V. V. Dyachenko, A. A. Kavin, S. A. Khitrov, N. A. Khromov, E. O. Kiselev, et al., Nucl. Fusion 57, 066047 (2017).

    Article  ADS  Google Scholar 

  27. P. B. Shchegolev, V. B. Minaev, A. Yu. Telnova, N. N. Bakharev, P. R. Goncharov, V. K. Gusev, G. S. Kurskiev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, I. V. Shikhovtsev, and S. Yu. Tolstyakov, J. Phys. Conf. Ser. 907, 012013 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Globus-M tokamak personnel for their assistance with organizing and carrying out experiments and preparing this paper, as well as for their insight on the obtained results. Routine measurements of plasma parameters were performed under the state assignment at the Ioffe Institute, and measurements of neutral beam injector parameters were supported by the program of the P-residium of the Russian Academy of Sciences. The study of noninductive current drive in regimes with an early atomic beam injection received funding from the -Russian Science Foundation, research project No. 17‑72-20076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Shchegolev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchegolev, P.B., Minaev, V.B., Bakharev, N.N. et al. Neutral Beam Current Drive in Globus-M Compact Spherical Tokamak. Plasma Phys. Rep. 45, 195–206 (2019). https://doi.org/10.1134/S1063780X19020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19020089

Navigation