Skip to main content
Log in

Acceleration and Trapping of Ions upon Collision of Ion-Acoustic Solitary Waves in Plasma with Negative Ions

  • NONLINEAR PHENOMENA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The phenomena occurring under head-on collision of ion-acoustic solitary waves in collisionless plasma consisting of positive and negative ions and electrons obeying the Boltzmann distribution are considered. Using particle-in-cell simulations, it is shown that large-amplitude compressive ion-acoustic solitary waves do not preserve their identity after the collision. Their amplitudes decrease and their shapes change. It is shown that the collision is accompanied by the generation of fast positive ions the velocity of which can exceed more than threefold the speed of sound. In addition, the collision is accompanied by the trapping of negative ions by the field of ion-acoustic solitary waves formed after the collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. C. Das and S. G. Tagare, Plasma Phys. 17, 1025 (1975).

    Article  ADS  Google Scholar 

  2. G. O. Ludwig, J. L. Ferreira, and Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984).

    Article  ADS  Google Scholar 

  3. Y. Nakamura and I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984).

    Article  ADS  Google Scholar 

  4. J. L. Cooney, D. W. Aossey, J. E. Williams, and K. E. Lonngren, Phys. Rev. E 47, 564 (1993).

    Article  ADS  Google Scholar 

  5. T. Takeuchi, S. Iizuka, and N. Sato, Phys. Rev. Lett. 80, 77 (1998).

    Article  ADS  Google Scholar 

  6. J. F. McKenzie, F. Verheest, T. B. Doyle, and M. A. Hellberg, Phys. Plasmas 11, 1762 (2004).

    Article  ADS  Google Scholar 

  7. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

    Article  ADS  Google Scholar 

  8. Y. Nakamura, J. L. Ferreira, and G. O. Ludwig, J. Plasma Phys. 33, 237 (1985).

    Article  ADS  Google Scholar 

  9. Y. Nakamura and I. Tsukabayashi, J. Plasma Phys. 34, 401 (1985).

    Article  ADS  Google Scholar 

  10. J. L. Cooney, M. T. Gavin, J. E. Williams, D. W. Aossey, and K. E. Lonngren, Phys. Fluids B 3, 3277 (1991).

  11. D. W. Aossey, S. R. Skinner, J. L. Cooney, J. E. Williams, M. T. Gavin, D. R. Andersen, and K. E. Lonngren, Phys. Rev. A 45, 2606 (1992).

    Article  ADS  Google Scholar 

  12. F. Verheest, M. A. Hellberg, and W. A. Hereman, Phys. Plasmas 19, 092302 (2012).

    Article  ADS  Google Scholar 

  13. P. Chatterjee, U. N. Ghosh, K. Roy, S. V. Muniandy, C. S. Wong, and B. Sahu, Phys. Plasmas 17, 122314 (2010).

    Article  ADS  Google Scholar 

  14. S. A. El-Tantawy and W. M. Moslem, Phys. Plasmas 21, 052112 (2014).

    Article  ADS  Google Scholar 

  15. S.-S. Ruan, W.-Y. Jin, S. Wu, and Z. Cheng, Astrophys. Space Sci. 350, 523 (2014).

    Article  ADS  Google Scholar 

  16. K. Roy, T. K. Maji, M. K. Ghorui, P. Chatterjee, and R. Roychoudhury, Astrophys. Space Sci. 352, 151 (2014).

    Article  ADS  Google Scholar 

  17. K. Roy, P. Chatterjee, and R. Roychoudhury, Phys. Plasmas 21, 104509 (2014).

    Article  ADS  Google Scholar 

  18. M. A. Khaled, Astrophys. Space Sci. 350, 607 (2014).

    Article  ADS  Google Scholar 

  19. U. N. Ghosh, K. Roy, and P. Chatterjee, Phys. Plasmas 18, 103703 (2011).

    Article  ADS  Google Scholar 

  20. P. Chatterjee, M. Ghorui, and C. S. Wong, Phys. Plasmas 18, 103710 (2011).

    Article  ADS  Google Scholar 

  21. M. K. Ghorui, U. K. Samanta, T. K. Maji, and P. Chatterjee, Astrophys. Space Sci. 352, 159 (2014).

    Article  ADS  Google Scholar 

  22. S. Parveen, S. Mahmood, M. Adnan, and A. Qamar, Phys. Plasmas 23, 092122 (2016).

    Article  ADS  Google Scholar 

  23. J. Zhang, Y. Yang, Y.-X. Xu, L. Yang, X. Qi, and W.‑S. Duan, Phys. Plasmas 21, 103706 (2014).

    Article  ADS  Google Scholar 

  24. Yu. V. Medvedev, J. Phys. Commun. 2, 045001 (2018).

    Article  Google Scholar 

  25. Yu. V. Medvedev, Plasma Phys. Rep. 44, 544 (2018).

    Article  ADS  Google Scholar 

  26. Yu. V. Medvedev, Plasma Phys. Rep. 35, 62 (2009).

    Article  ADS  Google Scholar 

  27. Yu. V. Medvedev, Nonlinear Phenomena during Discontinuity Decay in Rarefied Plasma (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  28. M. K. Mishra and R. S. Chhabra, Phys. Plasmas 3, 4446 (1996).

    Article  ADS  Google Scholar 

  29. H. Schamel, Plasma Phys. 14, 905 (1972).

    Article  ADS  Google Scholar 

  30. M. Roberto, G. O. Ludwig, and J. A. Bittencourt, Plasma Phys. Controlled Fusion 31, 895 (1989).

    Article  ADS  Google Scholar 

  31. S. M. H. Jenab and F. Spanier, Phys. Plasmas 24, 032305 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Medvedev.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, Y.V. Acceleration and Trapping of Ions upon Collision of Ion-Acoustic Solitary Waves in Plasma with Negative Ions. Plasma Phys. Rep. 45, 230–236 (2019). https://doi.org/10.1134/S1063780X19020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19020077

Navigation