Skip to main content
Log in

Incoherent Scattering of Electromagnetic Waves by Langmuir Fluctuations Trapped in a Plasma Density Well

  • Oscillations and Waves in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Incoherent scattering of a probing wave by Langmuir fluctuations trapped and enhanced near a local minimum of the electron density (plasma density well) in plasma with a parabolic density profile is considered. Steady-state amplitudes of fluctuations are calculated for arbitrary velocity distribution functions of plasma particles with allowance for electron collisions. It is shown that quasi-periodic oscillations with two characteristic scales can be present in the spectrum of the plasma line. The smaller scale is due to the wellknown effect of discretization of the spectrum of Langmuir fluctuations in a plasma density well. The larger scale is associated with the generation of scattered waves in two spatial regions and subsequent interference of these waves at the exit from the density well. Oscillations with this scale are more stable under unsteady plasma conditions and can be more often observed in experiments. The results of this work can be used to experimentally determine the plasma parameters, such as the electron collision frequency and the size and lifetime of the plasma density well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Gordon, Proc. IRE 46, 1824 (1958).

    Article  Google Scholar 

  2. D. H. Froula, S. H. Glenzer, N. C. Luhmann, Jr., and J. Sheffield, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques (Academic, Burlington, MA, 2011).

    Google Scholar 

  3. J. A. Fejer, J. Geophys. Res. 65, 2635 (1960).

    Article  ADS  Google Scholar 

  4. T. Hagfors, J. Geophys. Res. 66, 1699 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. V. Evans, Proc. IEEE 57, 496 (1969).

    Article  Google Scholar 

  6. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon, Oxford, 1975).

    Google Scholar 

  7. W. J. G. Beynon and P. J. S. Williams, Rep. Prog. Phys. 41, 909 (1978).

    Article  ADS  Google Scholar 

  8. K. O. Yngvesson and F. W. Perkins, J. Geophys. Res. 73, 91 (1968).

    Article  ADS  Google Scholar 

  9. H. C. Carlson, W. E. Gordon, and R. L. Showen, J. Geophys. Res. 77, 1242 (1972).

    Article  ADS  Google Scholar 

  10. R. L. Showen, Radio Sci. 14, 503 (1979).

    Article  ADS  Google Scholar 

  11. D. Vidal-Madjar, W. Kofman, and G. Lejeune, Ann. Geophys. 31, 227 (1975).

    Google Scholar 

  12. A. N. Bhatt, M. J. Nicolls, M. P. Sulzer, and M. C. Kelley, Phys. Rev. Lett. 100, 045005 (2008).

    Article  ADS  Google Scholar 

  13. D. B. Muldrew and R. L. Showen, J. Geophys. Res. 82, 4793 (1977).

    Article  ADS  Google Scholar 

  14. B. Isham and T. Hagfors, J. Geophys. Res. 98, 13605 (1993).

    Article  ADS  Google Scholar 

  15. N. F. Blagoveshchenskaya, T. D. Borisova, M. Kosch, T. Sergienko, U. Brandstrom, T. K. Yeoman, and I. Haggstrom, J. Geophys. Res. 119, 10483 (2014).

    Article  Google Scholar 

  16. F. T. Djuth and D. F. DuBois, Earth Moon Planets 116, 19 (2015).

    Article  ADS  Google Scholar 

  17. N. Watanabe, M. Golkowski, and J. P. Sheerin, Earth Moon Planets 116, 89 (2015).

    Article  ADS  Google Scholar 

  18. E. Mishin and T. Hagfors, J. Geophys. Res. 102, 27265 (1997).

    Article  ADS  Google Scholar 

  19. V. V. Krasnoselskikh, T. D. de Wit, and S. D. Bale, Ann. Geophys. 29, 613 (2011).

    Article  ADS  Google Scholar 

  20. B. Isham, M. T. Rietveld, P. Guio, F. R. E. Forme, T. Grydeland, and E. Mjolhus, Phys. Rev. Lett. 108, 105003 (2012).

    Article  ADS  Google Scholar 

  21. V. E. Zakharov, Sov. Phys. JETP 35, 908 (1972).

    ADS  Google Scholar 

  22. V. A. Puchkov, Plasma Phys. Rep. 21, 866 (1995).

    ADS  Google Scholar 

  23. V. A. Puchkov, Plasma Phys. Rep. 24, 401 (1998).

    ADS  Google Scholar 

  24. V. A. Puchkov, Phys. Lett. A 372, 6400 (2008).

    Article  ADS  Google Scholar 

  25. G. J. Morales and Y. C. Yee, Phys. Fluids 19, 690 (1976).

    Article  ADS  Google Scholar 

  26. K. L. McAdams, R. E. Ergun, and J. LaBelle, Geophys. Rev. Lett. 27, 321 (2000).

    Article  ADS  Google Scholar 

  27. P. H. Yoon and J. LaBelle, J. Geophys. Res. 110, A11308 (2005).

    Google Scholar 

  28. R. E. Ergun, D. M. Malaspina, I. H. Cairns, M. V. Goldman, D. L. Newman, P. A. Robinson, S. Eriksson, J. L. Bougeret, C. Briand, S. D. Bale, C. A. Cattell, P. J. Kellogg, and M. L. Kaiser, Phys. Rev. Lett. 101, 051101 (2008).

    Article  ADS  Google Scholar 

  29. V. A. Puchkov, Plasma Phys. Rep. 35, 234 (2009).

    Article  ADS  Google Scholar 

  30. Yu. L. Klimontovich, The Statistical Theory of Non-Equilibrium Processes in Plasma (Izd. MGU, Moscow, 1964; Pergamon Press, Oxford, 1967).

    Google Scholar 

  31. Yu. L. Klimontovich, Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Nauka, Moscow, 1975; Pergamon, Oxford, 1982).

    Google Scholar 

  32. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic, New York, 1980).

    Google Scholar 

  33. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, 1973), Vol. 1.

    MATH  Google Scholar 

  34. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (Dover, New York, 1965).

    Google Scholar 

  35. L. A. Lobachevsky, Yu. V. Gruzdev, V. Yu. Kim, G. A. Mikhailova, V. A. Panchenko, V. P. Polimatidi, V. A. Puchkov, V. V. Vaskov, P. Stubbe, and H. Kopka, J. Atm. Terr. Phys. 54, 75 (1992).

    Article  ADS  Google Scholar 

  36. T. Maruyama, H. Shinagawa, K. Yusupov, and A. Akchurin, Earth Planets Space 69, 20 (2017).

    Article  ADS  Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, Oxford, 1977).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Puchkov.

Additional information

Original Russian Text © V.A. Puchkov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 9, pp. 714–729.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchkov, V.A. Incoherent Scattering of Electromagnetic Waves by Langmuir Fluctuations Trapped in a Plasma Density Well. Plasma Phys. Rep. 44, 805–819 (2018). https://doi.org/10.1134/S1063780X18090106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18090106

Navigation