Skip to main content
Log in

Aneutronic Fusion in Collision of Oppositely Directed Plasmoids

  • Fusion Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Tri-Alpha and Helion energy companies have proposed an approach as the near future fusion reactor. The method used in this kind of reactor for attaining high fusion yield is based on the formation and throwing of two plasmoids toward each other. In this study, the optimized reaction rate for interpenetration of two head on colliding plasmoids is investigated. Calculations are performed by supposing the velocity of plasmoids ions as Maxwellian distribution function. Fusion output-to-input power ratio (Q factor) was computed by evaluation of the velocity-averaged cross sections and also ion−electron and ion−ion Coulomb power loss. A fluid model including a computational code has been used for the precise calculations of fusion power balance. The optimum interpenetration velocity and plasmoids parameters required to reach the ignition are studied for aneutronic fusion fuels, such as p11B and D–3He, as well as D−T and D−D fuels. The results of investigation show that the breakeven is attainable in specific collision velocity and plasma temperature for each fuel. Also, the plasma density has to be around 1020 ions/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Slough, G. Votroubek, and C. Pihl, Nucl. Fusion 51, 053008 (2011).

    Article  ADS  Google Scholar 

  2. M. M. Basko, A. J. Kemp, and J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000).

    Article  ADS  Google Scholar 

  3. S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, Phys. Plasmas 17, 056303 (2010).

    Article  ADS  Google Scholar 

  4. T. P. Intrator, J. Y. Park, J. H. Degnan, I. Furno, C. Grabowski, S. C. Hsu, E. L. Ruden, P. G. Sanchez, J. M. Taccetti, M. Tuszewski, W. J. Waganaar, G. A. Wurden, S. Y. Zhang, and Zh. Wang, IEEE Trans. Plasma Sci. 32, 152 (2004).

    Article  ADS  Google Scholar 

  5. J. H. Degnan, D. J. Amdahl, A. Brown, T. Cavazos, S. K. Coffey, M. T. Domonkos, M. H. Frese, S. D. Frese, D. G. Gale, T. C. Grabowski, T. P. Intrator, R. C. Kirkpatrick, G. F. Kiuttu, F. M. Lehr, J. D. Letterio, et al., IEEE Trans. Plasma Sci. 36, 80 (2008).

    Article  ADS  Google Scholar 

  6. S. Zhang, G. A. Wurden, T. P. Intrator, E. L. Ruden, W. J. Waganaar, C. T. Grabowski, R. M. Renneke, and J. H. Degnan, IEEE Trans. Plasma Sci. 34, 223 (2006).

    Article  ADS  Google Scholar 

  7. R. E. Siemon, R. I. Lindemuth, and K. F. Schoenberg, Comm. Plasma Phys. Controlled Fusion 18, 363 (1999).

    Google Scholar 

  8. J. H. Degnan, J. M. Taccetti, T. Cavazos, D. Clark, S. K. Coffey, R. J. Faehl, M. H. Frese, D. Fulton, J. C. Gueits, D. Gale, T. W. Hussey, T. P. Intrator, R. C. Kirkpatrick, G. H. Kiuttu, F. M. Lehr, et al., IEEE Trans. Plasma Sci. 29, 93 (2001).

    Article  ADS  Google Scholar 

  9. S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012).

    Article  ADS  Google Scholar 

  10. H. Hora, G. H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, and X.-T. He, Energy Environ. Sci. 3, 479 (2010).

    Article  Google Scholar 

  11. S. Sonm and N. J. Fisch, Physics Lett. A 356, 72 (2006).

    Article  ADS  Google Scholar 

  12. N. J. Fisch and J. M. Rax, Phys. Rev. Lett. 69, 772 (1992).

    Article  ADS  Google Scholar 

  13. N. J. Fisch and M. C. Herrmann, Nucl. Fusion 35, 1753 (1995).

    Article  ADS  Google Scholar 

  14. N. J. Fisch and M. C. Herrmann, Nucl. Fusion 34, 1541 (1994).

    Article  ADS  Google Scholar 

  15. J. T. Slough, patent No. US 9082516B2 (2015)

    Google Scholar 

  16. M. Binderbauer, V. Bystritskii, and T. Tajima, patent No. EP 3187028A2 (2017).

    Google Scholar 

  17. M. Tuszewski, M. W. Binderbauer, D. Barnes, E. Garate, H. Guo, S. Putvinski, and A. N. Smirnov, patent No. US 20160276044A1 (2016).

    Google Scholar 

  18. F. Santini, Nucl. Fusion 46, 225 (2006).

    Article  ADS  Google Scholar 

  19. J. Friedberg, Plasma Physics and Fusion Energy (Cambridge Univ. Press, Cambridge, 2007), Chap. 9.

    Book  Google Scholar 

  20. W. M. Stacey, Fusion Plasma Physics (Wiley, Weinheim, 2005), p. 296.

    Book  Google Scholar 

  21. K. Hubner, H. Bruhns, and K. Steinmetz, Phys. Lett. A 69, 269 (1978).

    Article  ADS  Google Scholar 

  22. https://www.bnl.gov.

  23. A. Asle Zaeem, IEEE Trans. Plasma Sci. 38, 2069 (2010).

    Article  ADS  Google Scholar 

  24. M. M. Nevins and R. Swain, Nucl. Fusion 40, 865 (2000)

    Article  ADS  Google Scholar 

  25. H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).

    Article  ADS  Google Scholar 

  26. V. Damideh, A. A. Zaeem, A. Heidarnia, A. Sadighzadeh, M. A. Tafreshi, F. Abbasi Davani, M. Moradshahi, M. Bakhshzad Mahmoudi, and R. Damideh, J. Fusion Energy 31, 47 (2012).

    Article  ADS  Google Scholar 

  27. A. Salehizadeh, A. Sadighzadeh, M. Sedaghat Movahhed, A. A. Zaeem, A. Heidarnia, R. Sabri, M. Bakhshzad Mahmoudi, H. Rahimi, S. Rahimi, E. Johari, M. Torabi, and V. Damideh, J. Fusion Energy 32, 293 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Asle Zaeem.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asle Zaeem, A., Ghafoori Fard, H., Sadighzadeh, A. et al. Aneutronic Fusion in Collision of Oppositely Directed Plasmoids. Plasma Phys. Rep. 44, 378–386 (2018). https://doi.org/10.1134/S1063780X1803008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1803008X

Navigation