Advertisement

Plasma Physics Reports

, Volume 44, Issue 3, pp 359–368 | Cite as

Numerical Study of the Voltage Waveform Effect on the Spatiotemporal Characteristics of a Dielectric Barrier Microdischarge in Argon

  • A. I. Saifutdinov
  • A. A. Saifutdinova
  • B. A. Timerkaev
Low-Temperature Plasma
  • 21 Downloads

Abstract

The effect of the shape of the feeding voltage on the spatiotemporal characteristics of an atmospheric- pressure barrier microdischarge in argon is demonstrated using numerical simulations based on an extended fluid model. Results of simulations performed for sinusoidal and square feeding voltages are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Kogelschatz, B. Eliasson, and W. Egli, Pure Appl. Chem. 71, 1819 (1999).CrossRefGoogle Scholar
  2. 2.
    Z. Zhang, Y. Qiu, and Y. Lou, J. Phys. D 36, 2980 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    X. T. Deng and J. J. Shi, Appl. Phys. Lett. 87, 153901 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    V. Y. Plaksin, O. V. Penkov, M. K. Ko, and H. J. Lee, Plasma Sci. Technol. 12, 688 (2010).CrossRefGoogle Scholar
  5. 5.
    G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Process. Polym. 5, 503 (2008).CrossRefGoogle Scholar
  6. 6.
    U. Kogelschatz, J. Phys. Conf. Ser. 257, 012015 (2010).CrossRefGoogle Scholar
  7. 7.
    V. T. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge (Izd. Mosk. Gos. Univ., Moscow, 1989) [in Russian].Google Scholar
  8. 8.
    Yu. S. Akishev, A. V. Dem’yanov, V. B. Karal’nik, M. V. Pan’kin, and N. I. Trushkin, Plasma Phys. Rep. 27, 164 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    N. Benard and E. Moreau, Appl. Phys. Lett. 100, 193503 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Abdelaziz, T. Seto, M. Abdel-Salam, and Y. Otani, J. Phys. D 45, 115201 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M. Kotsonis and S. Ghaemi, J. Phys. D 45, 045204 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    S. V. Avtaeva, Plasma Phys. Rep. 43, 876 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    I. A. Shkurenkov, Y. A. Mankelevich, and T. V. Rakhimova, Eur. Phys. J. D 61, 95 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    V. V. Ivanov, Yu. A. Mankelevich, O. V. Proshina, and T. V. Rakhimova, Tech. Phys. Lett. 26, 1061 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    M. Bogaczyk, G. B. Sretenovic, and H. E. Wagner, Eur. Phys. J. D 67, 212 (2013).ADSGoogle Scholar
  16. 16.
    Z. Donko, P. Hartmann, and K. Kutasi, Plasma Sources Sci. Technol. 15, 178 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    J. P. Boeuf and L. C. Pitchford, Phys. Rev. E 51, 1376 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    E. A. Bogdanov, A. A. Kudryavtsev, and A. S. Chirtsov, Tech. Phys. 56, 55 (2011).CrossRefGoogle Scholar
  19. 19.
    Hayashi database (retrieved on May 5, 2016). www.lxcat.net.Google Scholar
  20. 20.
    Phelps database (retrieved on May 5, 2016). www.lxcat.net.Google Scholar
  21. 21.
    V. A. Ivanov, J. Phys. B 31, 1765 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    J. Gregorio, P. Leprince, C. Boisse-Laporteand, and L. L. Alves, Plasma Sources Sci. Technol. 21, 015013 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    St. Kolev and A. Bogaerts, Plasma Sources Sci. Technol. 24, 015025 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    S. K. Lam, C.-E. Zheng, D. Lo, A. Dem’yanov, and A. P. Napartovich, J. Phys. D 33, 242 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964).Google Scholar
  26. 26.
    V. S. Marchenko, Sov. Phys. JETP 58, 292 (1983).Google Scholar
  27. 27.
    Excimer Lasers, Ed. by C. K. Rhodes (Springer-Verlag, New York, 1979).Google Scholar
  28. 28.
    U. Kogelschatz, IEEE Trans. Plasma Sci. 30, 1400 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, J. Phys. D 26, 889 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    N. Osawa, H. Kaga, Y. Fukuda, S. Harada, Y. Yoshioka, and R. Hanaoka, Eur. Phys. J. Appl. Phys. 55, 13802 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    M. Kotsonis and S. Ghaemi, J. Appl. Phys. 110, 113301 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    M. Laroussi, X. Lu, V. Kolobov, and R. Arslanbekov, J. Appl. Phys. 96, 3028 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    S. Liu and M. Neiger, J. Phys. D 34, 1632 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    S. Liu and M. Neiger, J. Phys. D 36, 1565 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).CrossRefGoogle Scholar
  36. 36.
    A. A. Kudryavtsev, A. S. Smirnov, and L. D. Tsendin, Physics of Glow Discharge (Lan’, St. Petersburg, 2010) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Saifutdinov
    • 1
    • 2
  • A. A. Saifutdinova
    • 3
  • B. A. Timerkaev
    • 3
  1. 1.Kazan Federal UniversityKazan, TatarstanRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Tupolev Kazan National Research Technical UniversityKazan, TatarstanRussia

Personalised recommendations